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Abstract: Face alignment has made a great progress in recent years and cascade regression framework is one of the main
contributors. However, performance of this framework is unsatisfied on the faces of heavy occlusion and large pose. Blame
on that regression is sensitive to invisible landmarks and unified initialization is easy to make the results trapping into local
minima. In this paper, we propose a new pipeline of salient-to-inner-to-all to progressively compute the locations of landmarks.
Additionally, a feedback process is utilized to improve the robustness of regression. We bring out a pose-invariant shape retrieval
method to generate the discriminative initialization. Experiments are performed on two benchmarks, and the experimental results
demonstrate that the proposed method has a considerable improvement on cascade regression model which can achieve favorable
results comparing with the state-of-the-art deep learning based methods.

1 Introduction

Social media data about faces has an explosive increasement in the
last decade. Tons of face analysis related technologies have been
developed. Face alignment is a necessary step in the whole face anal-
ysis pipeline, such as face recognition [1, 2], face tracking [3], facial
beautification [4, 5], age estimation [6] and expression recognition
[7, 8]. Face alignment aims to locate semantic facial landmarks (on
eyes, nose, mouth and cheeks), some of the researchers address
this problem by processing all the landmarks together while other
researchers locate the landmarks individually. Cascade shape regres-
sion is a popular framework that operates all landmarks together.
It can produce good results in an exact and fast way. But some
landmarks are invisible which caused by the partial occlusion and
pose variations, in this case, most of cascade shape regression based
methods will give the incorrect results.

One reason leading to the above problem is the limitation of the
regression framework. Popular cascade regression models [9–11]
treat all landmarks as a indivisible whole and regress them together.
However, some landmarks are invisible in the conditions of heavy
occlusion, bad illumination or large pose. It is difficult to directly
locate all landmarks of the above conditions, because learning the
detection of the invisible landmarks is unpredictable. Another rea-
son is that the initialization for regression is unified. Therefore,
regression models start from an averaged initial shape will regress
to different results. The averaged face is a natural frontal face. The
result will be more accurate if the input face is similar to average
face. It is not reasonable to regress a large pose face from an averaged
initial face.

In this paper, we propose a salient-to-inner-to-all framework com-
bined with a feedback operation to address the first problem. Firstly,
5 salient landmarks (eyes centers, nose tip, mouth corners) are
located by the coarse cascade shape regression model. Then, inner
landmarks that related to salient landmarks are located in the fine
cascade shape regression. Inner landmarks are feature points that
do not contain points of cheeks, such as the third column image of
Fig. 1. Thirdly, all landmarks results are regressed. We use results
of all landmarks to compute the new salient landmarks, then we
replace the salient landmarks of first step by using new salient land-
marks. Finally, inner landmarks are located again by applying the
new salient landmarks information and the final all landmarks results
are obtained. Salient landmarks detection can efficiently reduce the

effect of the problem that some landmarks are invisible. It is pos-
sible to get all landmarks by directly utilizing 5 salient landmarks
information. However, salient landmarks contain less structure infor-
mation. Inner landmarks related to salient landmarks contain more
information and the localization is more precise. Inner landmarks
detection uses the local information and all landmarks detection uses
the global structure information. Inner landmarks detection and all
landmarks detection further improve the accuracy of salient land-
marks. Therefore, it can ameliorate the salient landmarks with the
results of all landmarks. Some bad cases of salient results can be cor-
rected by the feedback. Accuracy of salient landmarks is improved
after feedback operation and later stages can obtain a better benefit.

Initial shape is very important and more precise initial shape can
lead to a more accurate result. For the second problem, we use a
pose-invariant shape retrieval approach to help us to generate the
discriminative initial shape. We assume that the initial face can be
treated as the linear combination of some similar faces [12]. These
similar faces can be searched from the training set. Pose-invariant
shape retrieval method makes faces rotating into a uniform pose and
Manhattan distance between landmarks of different faces is used to
measure the similarity. Faces with high similarity are selected from
training dataset to generate the initial shape. Although there are few
faces with extreme variation in pose, some input faces with extreme
pose variations can find enough similar faces for reference. The gen-
erated face is similar with the input face and it is discriminative
according to the input face. By this way, the unified initialization
is replaced by the discriminative initialization.

In this paper, we propose a feedback cascade shape regression
framework (see Fig. 1) in which landmarks are progressively located
in a salient-to-inner-to-all manner. The contributions of this paper
are as follows: i) We propose a novel pipeline that is salient-to-inner-
to-all way. Salient landmarks detection is robust in the conditions
of heavy occlusion and large pose. Inner landmarks detection is an
intermediate step to connect salient landmarks detection and all land-
marks detection. ii) We utilize feedback scheme to ameliorate the
classical cascade shape regression model. In this framework, results
of salient landmarks detection are refined after feedback operation.
iii) A pose-invariant shape retrieval method is proposed to search
the similar faces to generate the discriminative initialization. By
applying this method, the discriminative initial shape for the large
pose input is more accurate. iv) Based on the new framework, con-
ducted experiments show that our approach can improve the classical
regression framework significantly. Extensive results show that our
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method is competitive with deep learning methods on 300W dataset.
Our method is much better than all of other methods on COFW
dataset and shows its robustness in condition of occlusion.

The remainder of this paper is organized as follows: Section
2 provides an overview of related work. Feedback cascade shape
regression framework and salient-to-inner-to-all manner are pre-
sented in Section 3. Section 4 shows the experimental results and
analysis. Section 5 is the conclusions.

2 Related Work

In the last two decades, face alignment has a notable progress and
lots of excellent work are reported. Generally, these approaches can
be categorized into three classes, holistic methods, deep learning
methods and local methods. The conventional way of holistic meth-
ods is that the model is trained by using all the landmarks together.
Local methods train the model for a single landmark independently
as the opposite. Deep learning methods use massive training data and
different network architecture. In this paper, local methods and deep
learning methods are introduced briefly and a large amount of space
is used to introduce holistic methods.

2.1 Local Methods

In local methods, each landmark corresponding to a model, the
model may be a detector, regressor or part template. Active Shape
Model (ASM) [13] is the first work on this topic and learns patterns
of variability from a training set to form the model. By using both
shape and texture information, Constrained Local Model (CLM)
[14] generates a set of regional template detectors and uses the gen-
erated response images to find the best matched image. Wang [15]
proposes an algorithm to optimize the global warp update across all
local search responses by enforcing convexity at each local patch
response surface. Lucey [16] improves performance upon the canon-
ical CLM formulation by applying linear SVMs as patch-experts
and a composite warp update step. Saragih [17] proposed a new
approximation of the likelihood maps by using nonparametric repre-
sentations for the fitting procedure. Zhu [18] applies tree-structured
models and uses global mixtures to capture topological changes cor-
responding to the viewpoint to obtain the results. Some researchers
combine local and holistic methods to solve this problem. For
example, [19] learns a model of the geometric relation between dif-
ferent face parts and integrates this part-based model into regression
framework.

2.2 Holistic Methods

Active Appearance Model (AAM) [20] is a famous method in early
time. AAM constructs face prior model by analyzing training data
statistically and uses the model to match face images in the test-
ing stage. In order to improve AAM fitting performance, Matthews
[21] proposes an efficient fitting algorithm based on the inverse com-
position. Considering efficiency and accuracy, [22] uses a set of
classifiers that learned from local patch to guide the search at the
component level. In recent 10 years, shape regression model [9–
11, 23–26] becomes one of the most classic frameworks and cascade
shape regression is the most successful and widely used method.
Cascade regression model is first used in [23] to estimate the facial
shape. ESR [9] directly learns a regression function to infer the
shape from a sparse subset of pixel intensities indexed relative to the
current shape estimate. Ensemble of Regression Trees (ERT) [11]
substitutes the weak fern regressor in ESR [9] with a regression tree
and limits the distance between the pairwise feature points to achieve
a better result. Local Binary Feature (LBF) [25] proposes learning
local binary feature for each landmark independently and jointly
regression for all landmarks. Supervised descent method (SDM) [10]
predicts shape increment by employing a cascaded linear regression
based on SIFT features. GSDM [3] improves the performance of
SDM [10] by computing the gradient in global. cGPRT [27] applies
Gaussian process into cascade regression trees and shape-indexed
features to achieve good performance. CFSS [28] applies the idea of

coarse-to-fine to do shape searching in the sub-region and the results
are not affected by the initial shape. In summary, Supervised descent
method (SDM) [10], GSDM [3] and Project-out Cascade Regres-
sion (PO-CR) [26] focus on optimization problem, Explicit Shape
Regression (ESR) [9], Local Binary Feature (LBF) [25]and cGPRT
[27] focus on discriminative feature used in trees, CFAN [29] and
CFSS [28] follow a coarse-to-fine manner. Xiao et al. [30] pro-
pose a similar work that gradually increases the landmark that starts
from 5 points to 19 points and finally extends to 68 points for face
alignment. However, this method uses multi-initialization between
the stages and these initializations come from K-means centers, as a
contrast, we only use one initialization and it is generated by using
training data. Our inner landmarks are 49 points that are highly asso-
ciated with the 5 salient landmarks and do not contain landmarks
on cheeks. 19 points of this method contain landmarks of cheeks
and it is difficult to get accurate results. Because 19 points contain
points of eyes, eyebrows, nose, mouth and cheeks, the structure of
19 points is a global structure. 49 points only contain points of eyes,
eyebrows, nose and mouth, this structure is a local structure. Our
salient landmarks are refined both in local and global. While this
method refines the salient landmarks only in global, that is to say
our framework is more comprehensive. CFSS [28] uses the idea of
coarse-to-fine, but they use all landmarks in the whole procedure
while we use salient landmarks firstly. They do shape searching for
classification and we use shape searching to generate the discrimina-
tive initialization. Additionally, our shape searching method is much
faster.

2.3 Deep Learning Methods

Deep learning based methods are the most popular in present and
many deep learning approaches give a better results comparing to
the traditional methods. Sun et al. [31] first use cascaded deep con-
volution network to estimate the position of five facial landmarks
and refine the position of landmarks level by level. Zhou et al. [32]
also use multi-level deep networks to detect facial landmarks in a
coarse to fine manner. Honari et al. [33] present Recombinator Net-
works by using multi-scale input maps for learning coarse-to-fine
feature. TCDCN [34] proposes a multi-task learning method that
employs auxiliary facial attribute recognition to obtain correlative
facial properties to improve the performance of landmark detection.

3 Feedback Cascade Shape Regression

3.1 Cascade Shape Regression Model

Cascade shape regression model utilizes lots of regressors to make
the initial shape regressing to ground truth. For facial landmark
detection, the increments are offset of each landmark and the results
are the location of landmarks. A face can be represented as S =
{Xj |j = 1, 2...p} ∈ ℜ2p, where p is the number of the landmarks,
Xj denotes the x,y-coordinates of the j-th landmark in a face image
I . The cascade procedure is a linear process and the formulation of
this process can be presented as follows:

Si,t+1 = Si,t + rt(I, Si,t) (1)

where rt represents the t-th regressor, Si,t represents the current esti-
mated shape of level t, Si,t+1 represents the shape of the next level.
In this manner, the shape is updated step by step and increased the
difference from the next level is rt. And in each level, the regressor
rt(I, Si,t) is learnt by solving the following optimization problem:

rt = argmin
rt

L∑
i=1

∥S∗
i − Si,t − rt∥2 (2)

where S∗
i is the ground-truth, L represents the number of training

data. Algorithm 1 shows the above procedure.
Gradient boosting tree algorithm [35] is applied and sum of square

error is regarded as the loss to learn the regressor rt. Offset of each
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Fig. 1: The overall procedure of salient-to-inner-to-all face alignment. For an input face image, coarse regression is applied and salient land-
marks are located. Then, a pose-invariant shape searching method is used to generate an initial shape for fine regression in inner landmark
detection. All landmarks are detected like the former step and results are feedback to improve the accuracy of salient landmarks. Inner landmarks
and all landmarks are located one more time.

Algorithm 1 Learning rt in training stage.

Input: Training dataset {S1, S2, ..., SL};
1: Initialisation: Ii, S∗

i , Si
2: For level t from 1 to T
3: ∆Si,t = S∗

i − Si,t, //Incremental of each level
4: f0(I, Si,t) = argmin

γ∈ℜ2p

∑L
i=1 ∥∆Si,t − γ∥2

5: For weak regressor k from 1 to K
1) For i from 1 to L
rk(i) = ∆Si,t − fk−1(Ii, Si,t)
2) By using a weak regression function gk to iteratively

reach the targets rk(i).
3) fk(I, St) = fk−1(I, St) + v ∗ gk(I, St)

Output: {rt = fKk=1}
T
t=1

landmark is computed by averaging the samples belonging to the
corresponding leaf node. At each split node of the tree, threshold is
applied to classify the samples into different leaf node referring to
the pairwise pixel difference value. Usually, at each node, we greed-
ily select the best split from a number of candidates splits that are
randomly generated. The best one should minimize the sum of the
square error. Use θ to present the parameter set (τ , u and v), τ is
threshold, u and v are positions of pairwise points. This process can
be represented in the following formulation:

E(M, θ) =
∑

s∈{l,r}

∑
i∈Mθ,s

∥ri − µθ,s∥2 (3)

µθ,s =
1

∥Mθ,s∥
∑

i∈Mθ,s

ri (4)

where M is the indices of training samples used in this node, Mθ,l
is the set of indices of samples that are classified into the left node
judged by the threshold, ri is the residue of sample i in the gradi-
ent boosting algorithm. The formulation above can be rewritten as
follows by omitting the parts that are independent of θ:

argmax
θ

E(M, θ) = argmin
θ

∑
s∈{l,r}

∥Mθ,s∥µθ,s
Tµθ,s (5)

µθ,s is the only factor that is to be computed and the node split
optimization is efficient.

Cascade shape regression is successful in face alignment and
many improvement methods are proposed. For example, [36] pro-
posed a shrinkage factor 0< v <1 to control the increment. Because
the number of levels is usually over 10, the increment should be
smaller in later level to make sure the precision of regression. It is a
very important factor to overcome the over-fitting. [11] proposed an
effective constraint to help algorithm to select better features from
a large random feature pool. They proposed the idea that the closer
between the pairwise points in a face, the greater chose probability.
In a big candidate feature pool, the distance is computed by the for-
mulation: e−λ||u−v||, where || · || represents the Euclidean distance,
λ is the parameter to control distance of the pairwise points.

We use decision tree to learn the regressor rt and local feature
to make the decision for each tree. In this paper, a normalized fea-
ture called NPD [37] feature is used. Compared to the famous pixel
difference feature, this feature is more robust and efficient. The
mentioned two key technologies are also used in our framework.

3.2 Feedback Regression in A Salient-to-inner-to-all
Manner

Cascade shape regression model starts from an initial shape. The face
shape is updated through regressors in a sequence way. Our method
applies this framework in a progressive and feedback manner. Salient
landmarks are detected firstly, then inner landmarks which have
a strong relationship with salient landmarks are located, all land-
marks are detected after that. The positions of salient landmarks are
updated with the results of all landmarks. Inner landmarks and all
landmarks are regressed again to get the finally results. For salient
landmarks detection, the mean shape is used as the initial shape and
we call this regression " coarse regression ". For later stages, the dis-
criminative initial shape is applied and we call this regression " fine
regression ". The detail of generating the discriminative initial shape
and pose-invariant shape retrieval method is presented in Section 3.3.
The details of the testing procedure are described in Algorithm 2.

3.2.1 Salient-to-inner-to-all Manner: Heavy occlusion, large
pose and bad illumination are the major problems for unconstrained
face alignment. Some landmarks are invisible due to the above prob-
lems. The regression model hardly learns useful information from
the missing points. To cope with the above problem, we obtain the
results in a salient-to-inner-to-all way. Salient landmarks are located
after coarse regression in the first step. This step provides a guide
to the later steps. Due to sparsity and constitutive property, salient
landmarks are insensitive to occlusion and pose variance. The salient
points are used to search similar faces on the training set. We use
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Algorithm 2 Overview of testing procedure.

Input: Training dataset, testing dataset and mean shape of 5 salient
landmarks;

1: After coarse regression, salient landmarks F5 is located,
2: Searching similar shapes Fsim5 by using Manhattan distance:

M(F ∗
5 − F5), F ∗

5 is ground truth salient point of training data,
3: Generating inner (49) landmarks initial shape I49 by linear

combination of Fsim5,
4: Fine regression by using I49, we get inner landmarks F49,
5: Searching similar shapes Fsim49 by using Manhattan distance:

M(F ∗
49 − F49), F ∗

49 is ground truth 49 point of training data,
6: Generating initial shape I68 by linear combination of Fsim49,
7: Fine regression by using I68, we get all landmarks F68,
8: Updating F5 by using I68, F5 → F5new ,
9: Repeating the step 2 to step 7 for Nre time,

Output: Final results F68new .

these similar faces to generate an initial shape for inner landmarks
detection. The details of generating the initial face are presented in
the next section. With the generated initial face, inner landmarks are
located. Then, inner landmarks results are used to find similar faces
and generate initial face for all landmarks regression. The generated
initial face is similar to the input face and it is easy to be regressed
to the target location.

It is not suitable to regress all landmarks directly from salient
landmarks results, because the structure information of salient land-
marks is not sufficient to generate a very discriminative initialization.
For instance, salient landmarks can not distinguish faces with open
mouth and close mouth. Different eyes and mouth expressions are
treated as one kind. we can see this problem in Fig. 2. These two
different faces have same salient landmarks and they can not be
distinguished by only using salient landmarks. That is why we uti-
lize inner landmarks as an intermediate step. Inner landmarks can
help us to find more accurate similar faces and lead to a better
initialization for all landmarks regression. These inner landmarks
have a strong relationship with salient landmarks, so this intermedi-
ary step (inner landmarks detection) can keep advantages of salient
landmarks detection.

Fig. 2: Different faces with same salient landmark. Red points are
salient points and different color lines are contour lines of face
organs.

3.2.2 Feedback Regression: One of the limitations of cascade
regression models is the initial unified shape. If the results trapped
into the local optimum, the cascade regression procedure cannot
jump out to find a global optimum. This drawback can be weak-
ened by giving a discriminative initialization to some extent. In this
section, we apply another strategy, that is feedback. Though results
of all landmarks trapped into local optimum, salient points may
be close to global optimum. Because salient landmarks are strong
semantic and robust comparing to other landmarks. The salient
landmarks positions are updated after all landmarks detection. In
practical, we simply replace coarse result of the salient landmarks
with the salient landmarks computed by using all landmarks. By this
way, a new start is given and it is close to the global optimum. This
procedure is illustrated in Fig. 3. The Fig. 3 (b) is the result which

trapped into local optimum without feedback. From this figure, we
can see that salient landmarks are close to ground truth even if all
landmarks are not accurate. The Fig. 3 (c) and Fig. 3 (d) are updated
salient landmark and final result after feedback. Obviously, feed-
back operation can improve the accuracy of salient landmarks when
the coarse salient landmarks detection is not accurate and further
improve the final result.

(a) (b)

(c) (d)

Fig. 3: Example of feedback. Image(a) is coarse result of salient
landmarks, image(b) is result after using image(a). Image(c) is feed-
back result of salient landmarks by using image(b), image(d) is final
result.

3.3 Pose-invariant Shape Retrieval

One of the important factors of regression is initialisation. Coarse
regression is initialised with averaged shape and fine regression is
initialise with generated shape. We assume that a face can be pre-
sented by a combination of similar faces, and weight of each face
is proportional to the similarity. Based on the above assumption,
the initial face can be obtained after we find some similar faces.
Manhattan distance between two faces is calculated to measure the
similarity. If the distance between two faces is small, the similarity
will be high and these two faces are considered to be similar, vice
versa. Weight wn for each similar face is computed as follows:

wn =
1
n + 1

n+1 + · · ·+ 1
N

N
(6)

where n = 1 represents the most similar one, N is the number of
similar faces. In our experiment, N = 19 can produce best result.
This formulation makes sure that the more similar face has a bigger
weight.

Table 1 The analysis of the roll angle for samples of 300W dataset. The
numbers represent quantity of samples with roll angle over 20◦, 30◦ and 40◦.

300W dataset Training (3148) Testing (689)

> 20◦ 83 34
> 30◦ 2 9
> 40◦ 0 2
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However, some of the samples with extreme pose cannot find
enough faces with high similarity. From Table 1, we can see that
samples with large pose is not enough if we want to find 19 simi-
lar faces. In this paper, we propose a pose-invariant shape retrieval
method to find the similar faces. This method can reduce the inci-
dence of this problem to some extent. All the training samples are
rotated into a uniform pose that middle point between eye centers
has the same x coordinate with the middle point of mouth corners.

Fig. 4: The unified face. The blue line is consisted of two middle
points.

Fig. 4 shows the unified face and we can see that the blue line
should be vertical. A rotation matrix A is calculated to rotate the
input face to the identical pose. We resize the rotated face into a
fixed size, such as 100 × 100. The matrix A is obtained as follows:

A =

 cos(θa) sin(θa) 0
−sin(θa) cos(θa) 0

0 0 1

 (7)

where θa is the angle between the line consisted of two middle points
and the vertical coordinate axis. Salient landmarks distance between
two faces is used to find similar faces and then generate the ini-
tial shape for inner landmark detection. Inner landmarks distance
between two faces is used to search similar faces and generating
the initial shape for all landmark detection. The parameter θa can
be computed easily after obtaining the salient landmarks and inner
landmarks.

4 Experiments

Datasets: Though excellent performance has been reported on some
datasets with little variations, it is still challenging to have a good
result on other datasets with heavy occlusion and extreme pose. In
this paper, experiments are conducted on two challenging datasets
(300W and COFW) and state-of-the-art performance is presented .

300W dataset: This dataset is a 68 landmarks dataset and consists
of five databases: AFW [18], LFPW [38], HELEN [39], XM2VTS
[40] and challenging iBUG. Dataset configuration in [25] is used
to have a fair comparison. The training set contains 3148 images.
Test set contains 689 images. The dataset includes two subsets: the
common subset and the challenging subset iBUG. The challenging
subset contains some faces with large pose both in-plane and out-of-
plane.

COFW dataset [41]: This dataset is annotated with 29 landmarks
and mainly contains the faces with heavy occlusion. Number of
training samples is 1345 and 507 samples for testing.

Evaluation Metric: Two metrics: standard mean absolute error
and global mean absolute error [42] are used in the experiments. The
commonly used evaluation metric: MAE (mean absolute error) is
point-to-point distance between two faces. The GMAE (global mean
absolute error) not only contains the point-to-point distance MAE,
but also contains the structure distance DG between two shapes.
This evaluation metric is more comprehensive. All errors are nor-
malized by the inter-ocular distance and results in this section are

simplified form without ’%’ symbol. For 300W dataset, calculated
error distribution (CED) curves and global CED curves are plot-
ted to give more visible results. The standard mean absolute error
is computed as follows:

MAE =
||S − S∗||

Din
(8)

where Din is the inter-ocular distance, S is estimated shape and S∗

is ground truth. The structure distance DG between S and S∗ is
computed as follows:

DG =

∑p
i=1 D(Xi, L

∗
i )

p ∗Din
(9)

D(Xi,L
∗
i ) =

|(x∗i − xi)(y
∗
i+1 − yi)− (x∗i+1 − xi)(y

∗
i − yi)|

||X∗
i (x

∗
i , y

∗
i )−X∗

i+1(x
∗
i , y

∗
i )||

(10)

where p is the amount of points, Xi(xi, yi) is landmark of estimated
face S, X∗

i (x
∗
i , y

∗
i ) and X∗

i+1(x
∗
i , y

∗
i ) are landmarks of ground

truth S∗, L∗
i is line consist of X∗

i (x
∗
i , y

∗
i ) and X∗

i+1(x
∗
i , y

∗
i ). The

global error (GMAE) is computed as follows:

GMAE = DG +MAE (11)

Parameter Setting: In this paper, two kinds of regressions are
used, coarse regression and fine regression. For coarse regression, 20
randomly selected faces are used as initialization and cascade level
T = 18; for fine regression, 20 similar faces are used as initialization
and cascade level T = 20. Each level contains K = 500 weak regres-
sors and the depth of the tree used in regressor is D = 5. Shrinkage
factor is 0.05. Following the feature selection constrain, we use 400
pairwise pixels and threshold corresponding to each pair is randomly
chosen. For node splitting, we repeat S = 500 times to find the best
one. The feedback procedure is repeated Nre = 1 time.

4.1 Comparison with Other Work

Table 2 Results of averaged error (%) compared with state-of-the-art
approaches on 300W. Errors are normalised by the inter-ocular distance, and
the results of other methods are directly cited from the published papers.

Method Common Challenging Fullset

DRMF [43] 6.65 19.79 9.22
ESR [9] 5.28 17.00 7.58
RCPR [41] 6.18 17.26 8.35
SDM [10] 5.57 15.40 7.50
ERT [11] - - 6.40
LBF [25] 4.95 11.98 6.32
cGPRT [27] 4.46 10.85 5.71
CFSS [28] 4.73 9.98 5.76
TCDCN [34] 4.80 8.60 5.54
RAR [44] 4.12 8.35 4.94
RDR [45] 5.03 8.95 5.80
Our method 4.26 8.50 5.09

Table 2 displays comparisons with state-of-the-art methods on 300W
dataset. Compared methods include DRMF [43], ESR [9], RCPR
[41], SDM [10], ERT [11], LBF [25], cGPRT [27], CFSS [28], RAR
[44], RDR [45] and TCDCN [34]. From this Table, we can give
the following conclusions: ESR [9], ERT [11] and cGPRT [27] are
approaches of classical cascade shape regression framework, our
method has a large improvement over these methods; RAR [44],
RDR [45] and TCDCN [34] are state-of-the-art deep learning based
methods, our results are also comparable with deep learning based
methods. 300W challenging subset is a challenging dataset that has
many faces with large variations on pose and expression. Our method
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makes a significant improvement on this dataset compares with the
other traditional methods.

Table 3 shows the results of GMAE, structure distance DG and
computing time between different methods. The GMAE is an eval-
uation that measures the global distance between two faces. In this
new metric, our method is much better than others. We use the speed
that is provided in the corresponding paper. RAR [44] method takes
250 ms to compute a 256×256 face image and its speed is 4 fps. Our
method is real time and much faster than RAR [44].

Table 3 Results of GMAE, DG and computing speed (fps) compared with
state-of-the-art approaches on 300W Dataset.

Method GMAE DG Speed

ESR [9] 11.51 3.75 350
ERT [11] 9.40 2.98 1000
LBF [25] 9.33 2.93 320
CFSS Practical [28] 8.84 2.91 24
cGPRT [27] 8.40 2.69 93
Our method 7.23 2.14 50

Fig. 5 and Fig. 6 show the comparison of CED and global CED
curves with state-of-the-art approaches on 300W fullset, the fol-
lowing approaches includes DRMF [43], ESR [9], LBF [25], CFSS
Practical [28] and cGPRT [27]. We can see that our approach gaps
others in both CED and global CED curves. ESR [9] is reproduced
by ourselves with the error of 7.76. The result of LBF [25] is pro-
vided by the author, the codes of DRMF [43] and CFSS Practical
[28] are downloaded online.

Fig. 7 gives the comparison with 6 methods on 300W challenge
subset and our approach has a significant improvement. We also
show some visible results of 300W datasets in Fig. 9. Though it is
difficult to detect the landmarks in the images, our method achieves
good performance by applying the proposed method. Images in Fig.
8 are some frontal faces with different color shin, expression and
illumination. The results show that our method is robust on these
situations too.
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Fig. 5: Comparison of CED curves on 300W dataset.

Global Mean Absolute Error / inter-ocular Distance
0 0.05 0.1 0.15 0.2

F
ra

ct
io

n 
of

 6
89

 T
es

t f
ac

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LBF
CFSS Practical
cGPRT
ESR
DRMF
Our Method

Fig. 6: Comparison of global CED curves on 300W dataset.
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Fig. 7: Comparison of CED curves on 300W challenging dataset.

Table 4 Results of averaged error (%) compared with state-of-the-art
approaches on COFW dataset.

Method COFW

ESR [9] 11.2
RCPR [41] 8.50
SDM [10] 9.33
TCDCN [34] 8.05
RPP [46] 7.52
RAR [44] 6.03
PCD-CNN [47] 5.77
Our method 5.23

Comparison with state-of-the-art approaches on COFW dataset is
showed in Table 4. COFW dataset is very challenging due to lots
of faces with heavy occlusions. We report the results of some meth-
ods including ESR [9], RCPR [41], SDM [10], TCDCN [34], RPP
[46], RAR [44] and PCD-CNN [47]. From this Table, we can see
that our method is much better than other methods. With the help of
the salient-to-inner-to-all manner, our method is robust on the condi-
tions of occlusion. Fig. 10 shows some results of COFW dataset and
demonstrates the availability of our method. In this figure, a large
part of faces are invisible, our method can give good results with the
help of the proposed method, especially salient landmark detection,
the effect of occlusion is suppressed.

The experiments on 300W benchmark dataset show that our
method is second best and closes to the best method. On COFW
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Fig. 8: Results of some frontal faces on 300W dataset.

Fig. 9: Some challenging results of our method on 300W dataset.

Fig. 10: Experimental results of our method on COFW dataset.

benchmark dataset, our method is much better than others. Deep
learning methods are high accurate, but these methods need huge
computing resource, millions of training data and long running time.
Our method is based on linear regression framework which is effi-
cient and need low computing resource. RAR [44] method takes
250ms to process an image of 256×256, our method takes 20ms.
The memory footprint of our method is 300 MB and the memory
footprint of RAR [44] is over 1GB. From the above, we can see that

our method is comparable with state-of-the-art deep learning-based
methods.

4.2 Further Analyses

This paper mainly copes with two problems of cascade shape regres-
sion, the unified initialization and regression structure. In the section
of the introduction, we know that if an initial shape is similar to
the input face, the algorithm can give better result. For instance, if

IET Research Journals, pp. 1–9
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we use an averaged face as initial face (like LBF [25]), the error of
the common set is much lower than challenging set. That is because
most face shapes in the common set are very similar to the average
face. We utilize the 68 landmarks initial shapes as the final results to
evaluate the accuracy of initialization. If mean shape is used as the
final result on 300W full set, the error is bigger than 20. In manner
of salient-to-inner-to-all, the error of using generated discrimina-
tive initial face as the final result is 7.90. Combining this manner
with pose-invariant searching, the error of the initialization is 7.16.
By applying the whole procedure of our framework, the error of
68 initial landmarks is 6.48. Obviously, the initialization has a vast
improvement and each component has a contribution. And we can
see that salient landmarks detection has a potential to be more accu-
rate because it is the coarse result. The feedback operation is used
to solve this problem and Fig. 3 shows its effectiveness, especially
when the salient landmarks detection is not accurate.

4.3 Computation Complexity

The computation complexity of our approach mainly contains two
parts, searching the similar faces and regression procedure. The com-
plexity of searching the similar faces is O(Mall), where Mall is
the number of training samples. The main cost of this algorithm
is the second part. The complexity of one regression procedure is
O(TKDP ), where P is the number of landmarks. Our experiments
are conducted on a single core Intel(R) Xeon(R) CPU E5-2630 v3
@2.4 GHz. In 300W (68 landmarks) full set, our approach achieves
about 50 fps (frame-per-second).

5 Conclusion

In this paper, we propose a feedback cascade shape regression
method that follows a salient-to-inner-to-all manner. Firstly, Salient
landmarks are detected by coarse regression, then inner landmarks
and all landmarks are detected by fine regression. Both inner land-
marks detection and pose-invariant retrieval can help to search high-
quality similar faces to generate the initial face for fine regression.
The salient landmarks are updated by feedback operation and final
results are obtained in the salient-to-inner-to-all manner. Pipeline
of salient-to-inner-to-all is insensitive to heavy occlusion and pose-
invariant retrieval is robust on large pose. After feedback operation,
the algorithm restarts from a new initialization and the results are
more close to target location. Experimental results demonstrate our
approach is robust and accurate.
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