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ABSTRACT

Recent saliency detection methods have made great progress
with the fully convolutional network. However, we find that
the saliency maps are usually coarse and fuzzy, especially n-
ear the boundary of salient object. To deal with this problem,
in this paper, we exploit a multi-path feature fusion model for
saliency detection. The proposed model is a fully convolu-
tional network with raw images as input and saliency maps as
output. In particular, we propose a multi-path fusion strate-
gy for deriving the intrinsic features of salient objects. The
structure has the ability of capturing the low-level visual fea-
tures and generating the boundary-preserving saliency map-
s. Moreover, a coupled structure module is proposed in our
model, which helps to explore the high-level semantic prop-
erties of salient objects. Extensive experiments on four public
benchmarks indicate that our saliency model is effective and
outperforms state-of-the-art methods.

Index Terms— Multi-path feature fusion, coupled struc-
ture, saliency detection, fully convolutional network

1. INTRODUCTION

Saliency detection aims at locating the most visually distinc-
tive regions in an image, and has attracted many researcher-
s in recent years. From the perspective of biological visu-
al perception, salient object has abundant visual information,
which is first attracted by human attentions. In many comput-
er vision tasks, saliency detection is usually utilized as a pre-
precessing step. It has been shown a great success in many
visual fields, such as image segmentation [1], object tracking
[2] and content-aware image resizing [3].

Inspired by the human visual attention mechanisms, nu-
merous saliency algorithms have been proposed to detect the
conspicuous object from an image. Traditional algorithm-
s [4–7] are essentially based upon low-level features, such
as color, texture and location cues. These algorithms usual-
ly exploit lots of prior knowledge to detect salient objects,
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including local or global contrast, center-surround difference
and boundary connectivity [8]. Though obvious progress has
been made, the main drawbacks of these algorithms are that
the saliency results are not smooth at the object boundary, or
fail to extract the complete salient object.

Recently, many deep learning based algorithms [9–13]
have been proposed for saliency detection. These algorithms
use the convolutional neural networks (CNNs) to predict the
salient object in an end-to-end manner, and reach a remark-
able performance in terms of accuracy. The CNNs algorithm-
s are effective for detectting salient object, but the saliency
maps are still unsatisfactory. Due to lacking of the low-level
visual information, the saliency maps are usually blurry, e-
specially at the objects boundaries. On one hand, these al-
gorithms simply integrate the high-level semantic features to
generate the final results. In fact, the natural images usually
contain diverse structures (i.e. clutter texture), so it is chal-
lenging to preserve the contour of the salient object. On the
other hand, when background regions have similar appear-
ances as the foreground, the proposed algorithms are not able
to highlight the whole object uniformly.

Based on above discussions, we pay attention to the two
crucial problems. First, how to efficiently utilize the multi-
level convolutional features and preserve the objects’ struc-
tures information (such as edges). Second, how to precisely
locate the salient regions and uniformly highlight the salien-
cy maps. To deal with this two challenges simultaneously,
in this paper, we propose a novel multi-path feature fusion
networks (see Fig.1) to detect the salient objects. Similar to
the state-of-the-art algorithms [12, 13], the proposed salien-
cy model is also based on a fully convolutional neural net-
work with the raw images as input and the whole saliency
maps as output. In our network, a simple yet efficient fusion
method is used to utilize the multi-level features. Moreover,
inspired by DenseNet [14], we propose a coupled structure
module (namely CSM) to reuse the convolution features. The
structure can improves the accuracy of saliency detection and
generate the highlighted saliency map. Experimental results
show that our saliency model has the capability of capturing
the rich features of salient object across different convolution-
al layers.

Our study attempts to design an efficient deep convolu-

978-1-5386-1737-3/18/$31.00 c©2018 IEEE



tional network for saliency detection in complex images. The
main contributions are summarized as follows:

• We propose a multi-path feature fusion network, name-
ly MPFFNet, which uses the convolutional features
from different paths to generate the high-quality salien-
cy maps. The MPFFNet can extracts the intrinsic prop-
erties of salient object with combining the multi-level
features.

• We also propose a coupled structure module to improve
the accuracy of predicting the target object. Benefiting
from this module, the performance of saliency detec-
tion is greatly improved for better salient object local-
ization.

• Our algorithm can uniformly highlights the salient ob-
jects and smooths the saliency values in the salient ob-
jects boundaries. Comprehensive experiments show
that our algorithm achieves competitive performance
compared with state-of-the-art algorithms.

2. RELATED WORK

In this section, we mainly review the classic deep learning
methods for saliency detection. In recent years, numerous
superior models have been proposed for saliency detection
by using the convolutional neural networks. These methods
make attempts to develop various deep architectures for cap-
turing the intrinsic features of salient objects.

For instance, Zhao et al. [11] designed a multi-context
deep learning framework for saliency detection. They uti-
lized global and local context information to model the visual
saliency. Li et al. [9] used multi-scale features extracted from
a deep CNNs to produce a high-quality saliency map. Lee
et al. [10] proposed a unified deep learning framework for
salient object detection by integrating both high level and low
level semantic properties. Wang et al. [15] detected salient
object by integrating both local estimation and global search.
Two different deep architectures are used to derive the rich
features of salient object. However, these methods could not
predict the object details ideally.

Recently, saliency detection and semantic segmentation
are mostly based on fully convolutional networks (FCNs), and
have reached the outstanding results. Liu et al. [12] proposed
an end-to-end deep hierarchical network for saliency detec-
tion. They first predicted salient maps coarsely by using a
global information, then progressively improved object de-
tails by integrating the local context. Li et al. [13] proposed a
deep contrast network for detecting salient object, which in-
cludes a pixel-level fully convolutional stream and a segment-
wise spatial pooling stream. Wang et al. [16] utilized a recur-
rent fully convolutional networks for salient object detection.
Zhang et al. [17] learned the deep uncertain convolutional fea-
tures for saliency detection, which introduced a reformulat-
ed dropout after specific convolutional layers. Li et al. [18]

proposed a multi-task deep model based on a fully convo-
lutional network. Though great progress have been made by
these saliency models, there is still a large room for exploiting
multi-level convolutional features that preserve salient object
boundary and structure.

3. THE PROPOSED METHOD

In this section, we illustrate the proposed algorithm in detail-
s. As shown in Fig. 1, the architecture of our deep saliency
model consists of two components, a multi-path feature fu-
sion framework and a coupled structure module. The multi-
path fusion is a spatial pyramid structure, which is used to
produce different semantic feature maps. For each path, we
use a simple way to integrate its feature map with shallow
convolutional layer. At the same time, we propose a coupled
structure module to improve the accuracy of localization for
saliency detection. Finally, the final saliency map is generated
by aggregating maps from different paths.

3.1. Multi-path feature fusion

In order to efficiently use multi-level convolutional features,
we design a multi-path structure to fuse the features at dif-
ferent convolutional layers. Our saliency algorithm is based
on the VGG16 model [19], which has a strong feature repre-
sentation ability. The proposed network has five max-pooling
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Fig. 2. The structure of side output and path module.

layers with kernel size 2 and stride 2, so the size of output
feature map is reduced by a factor of 32. To make the out-
put map have the same size as input image, we use the up-
sampling operation to scale the map. In order to improve the
accuracy of saliency detection, we add three paths after the
last pooling stage to build the spatial pyramid structure. As
shown in Fig. 1, the output of the path module (yellow boxes,
i.e. Path1, Path2, Path3) represents high-level feature map for
each branch, denoted as Pi. Fig. 2 (right) shows that each
path module includes one 3× 3 convolutional layer, one cou-
pled structure module, one 1× 1 convolutional layer and one
up-sampling layer. Moreover, we observe that the multi-path
structure can accurately localize the salient regions but lose
lots of details. Previous work [20] indicates that the low-level
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Fig. 1. The architecture of our saliency detection model (best viewed in color). Similar to previous CNN-based methods
[13, 17], the proposed end-to-end network is also built on VGG16 model. The model has three primary parts: (1) blue box
(CSM) is a coupled structure module. (2) yellow boxes (i.e. Pathi) represent feature extraction function for each branch. (3)
three extra branches are connected with shallow convolutional layers, denoted as purple box (Side Output). Given an original
image (256x256x3), the high-level feature of salient object is first extracted by each path. Then three fusion maps are obtained
by integrating these features. At last, the final saliency result is generated by merging the three feature maps.

visual information is conducive to improve object details, e-
specially in salient object boundary. Therefore, we connect
three extra branches with shallow convolutional layers. These
shallow layers are conv3-3, conv4-3 and conv5-3, respective-
ly. Each branch contains two 3× 3 convolutional layers, one
1×1 convolutional layer and one up-sampling layer, as shown
in Fig. 2 (left). Then, three output feature maps (Side Output)
that represent rich contextual information are generated by
each branch, denoted as Bi. These hierarchical feature maps
{Bi, i = 1, 2, 3} contain abundantly low-level visual prop-
erties that is complementary to the high-level feature maps
{Pi, i = 1, 2, 3}. Thus, we further fuse these feature maps,
defined as

Fi = Wi ∗ Concat(Pi, Bi), (1)

where the symbol ∗ is the convolution operation; Concat is
the cross-channel concatenation. Wi is a convolutional layer
with 1×1 kernel size, which is used to balance the importance
of each feature map. For the final prediction, the feature map
is written as

S = V ∗ Concat(F1, F2, F3), (2)

where V is also a 1× 1 convolutional layer. We use the cross
entropy in our model, and compute the loss function between
the fused saliency map and the ground truth. Given a input
image X , we define its corresponding saliency map as Y =
{yi, i = 1, ..., |Y |}, yi ∈ [0, 1]. Thus, the final loss function
can be represented by

Lfinal =−
∑
yi∈Z

yilogP (yi = 1|X; Φ)

+ (1− yi)logP (yi = 0|X; Φ).

(3)

The parameter Φ is the collection of all network weights,
which are updated using SGD algorithm at each iteration. Ex-

perimental results show that the final feature map can signifi-
cantly keep the details of salient object contour.
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Fig. 3. The architecture of CSM.

3.2. Coupled structure module

In complex images, salient objects often have different pat-
terns, such as size, shape and position, so the saliency mod-
el should be able to efficiently obtain the high-level features
of salient object. Previous work [20] indicates that the high-
level semantic feature can improve the accurate recognition of
salient object. Therefore, the task of saliency detection needs
to address the problems: how to capture the spatial informa-
tion and accurately localize the salient object.

More recently, feature reuse is widely used in the modern
deep networks, such as ResNet and DenseNet. For exam-
ple, semantic segmentation has achieved outstanding results
by using these technologies. Motivated by this achievements,
we propose a coupled structure module embedded in the net-
work to improve the performance of localization, as shown
in Fig.3. The coupled structure consists of two complemen-
tary and symmetric components. Each component includes
one 3 × 3 convolutional layer and one 1 × 1 convolutional
layer. The non-linear transformation (ReLU) is also used af-
ter each convolutional layer. Besides, in order to enlarge the
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Fig. 4. Visual comparison of saliency maps generated from different saliency models.

receptive filed to cover the whole object, we use the dilated
convolutions [21] to increase the size of filters. The coupled
structure module is spatially sensitive and has the capability
of extracting the high-level semantic features. Experimental
results show that the CSM can conspicuously promote the ac-
curacy of saliency detection.

4. EXPERIMENTS

In this section, we demonstrate the effectiveness of multi-path
feature fusion model and show the performance of our algo-
rithm compared with state-of-the-art algorithms. We also an-
alyze the importance of the coupled structure module.

4.1. Datasets

For the training, we use MSRA10K dataset [22] to train the
network without data augmentation, which includes 10, 000
images with pixel-wise annotations. This dataset is sim-
ple and contains only one salient object in an image. For
the performance evaluation, we compare our model with
state-of-the-art algorithms on four public benchmarks, includ-
ing ECSSD [23], PASCAL-S [24], HKU-IS [11] and DUT-
OMRON [25]. ECSSD is a very challenging dataset, it con-
tains 1, 000 structurally complex images. PASCAL-S con-
tains 850 images, which is selected from the PASCAL VOC
2012 dataset. HKU-IS is a large dataset that contains 4, 447
challenging images with low contrast or multiple salient ob-
jects. In our experiments, we use the testing images of HKU-
IS for evaluation. DUT-OMRON has 5, 168 challenging im-
ages with complex backgrounds. Many images in this dataset
contain one or more salient objects.

4.2. Evaluation metrics

We use three metrics to evaluate the performance of different
saliency models, including the precision-recall (PR) curves,
maximum F-measure and mean absolute error (MAE) [8].
The saliency map is first converted to a binary mask using

a threshold within the range of [0, 255]. Then the PR curves
are obtained by comparing the binary mask with the ground
truth. The F-measure is defined as

Fω =
(1 + ω2) ∗ precision ∗ recall

ω2 ∗ precision + recall
, (4)

where ω2 is set to 0.3 like the most previous works [4, 6, 13].
We also report the MAE results, which measure the pixel-
level difference between the saliency map and the ground
truth.

4.3. Implementation Details

We train our MPFFNet with an open source deep learning
framework Caffe [26], and directly feed the input images into
the network. The proposed algorithm is trained on an Intel
Core computer with an i7-6850K CPU and a single GeForce
GTX 1080Ti GPU. In our experiments, we utilize VGG16 as
our pre-trained model and set the base learning rate to 1e −
8. The parameter of momentum is set to 0.9 and the weight
decay is set to 0.0005.

Running time. For training stage, it takes us about
10 hours to train the deep model. In testing, our network
takes 0.056s (18 FPS) to process an image (average 400 ×
300) without any pre/post-processing. Our method is faster
than most existed convolutional methods, for example, MD-
F(8s) [9], DCL(1.5s) [13], UCF(0.14s) [17], ELD(0.5s) [10],
DHS(0.04s) [12], and RFCN(4.6s) [16].

4.4. Comparison with other methods

We compare our algorithm with seven deep learning based al-
gorithms, including UCF [17], DCL [13], DHS [12], DS [18],
ELD [10], MDF [9], RFCN [16]. We also compare our algo-
rithm with three classic algorithms: DRFI [6], wCo [4], and
MB+ [5]. For a fair comparison, we use the saliency results
or source code provided by the author.

PR curves. As shown in Fig. 5, we report the perfor-
mance of PR curves compared with above-mentioned algo-
rithms. Benefiting from the multi-path feature fusion, the
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Fig. 5. The performance of PR curves on four datasets.

Table 1. Quantitative comparison of different methods on four datasets. The best two results are shown in red and blue.

Method ECSSD HKU-IS PASCAL-S DUT-OMRON
maxF MAE maxF MAE maxF MAE maxF MAE

wCo [4] 0.7156 0.1713 0.7255 0.1405 0.6550 0.1924 0.6298 0.1411
MB+ [5] 0.7389 0.1707 0.7328 0.1492 0.6765 0.1908 0.6242 0.1679
DRFI [6] 0.7860 0.1644 0.7826 0.1431 0.6898 0.1969 0.6640 0.1496
MDF [9] 0.8316 0.1050 0.8605 0.1292 0.7636 0.1453 0.6944 0.0916
ELD [10] 0.8681 0.0790 0.8809 0.0628 0.7713 0.1233 0.7052 0.0910

RFCN [16] 0.8976 0.0952 0.8876 0.0795 0.8320 0.1163 0.7381 0.0945
DS [18] 0.8824 0.1217 - - 0.7601 0.1625 0.7449 0.1204

DCL [13] 0.9006 0.0747 0.9066 0.0552 0.8105 0.1120 0.7563 0.0863
UCF [17] 0.9034 0.0691 0.8876 0.0612 0.8181 0.1108 0.7296 0.1203

OURS 0.9065 0.0646 0.8993 0.0513 0.8214 0.1061 0.7574 0.0754

generated saliency maps are very close to the ground truth.
This indicates that our PR curve obtains the higher preci-
sion than other algorithms. Moreover, the proposed algorithm
achieves competitive results on both two challenging datasets:
PASCAL-S and HKU-IS, which contain multiple salient ob-
jects in most of images. These advantages demonstrate that
our saliency model is capable of predicting the salient objects
accurately.

F-measure and MAE. We also report the results of quan-
titative comparison, as shown in Table 1. On the four datasets,
our algorithm significantly outperforms most of other state-
of-art algorithms over the evaluation metrics, especially in
terms of MAE. For example, On ECSSD dataset, our method
achieves the best performance. Comparison with the second
best algorithm DCL, the MAE of our algorithm is conspic-
uously improved by 12.4% on DUT-OMRON dataset. This
indicates that our algorithm is effective and robust to detect
the salient object with complex backgrounds.

Visual results. We also provide a visual comparison of
different algorithms, as shown in Fig. 4. It is obvious that our
model shows superior capability of highlighting the salient
objects and preserving the boundaries. In some challenging
cases, our algorithm still produces favorable results with few-
er noisy background, such as object near the image boundary
(the second row), scattered backgrounds (the last row) and
similar appearances between foreground and background (the
third row). Besides, our model can generate more accurate
saliency map with boundary preserved (the first row).

Table 2. Analysis of our saliency model.

Model Settings ECSSD DUT-OMRON
maxF MAE maxF MAE

without CSM 0.8975 0.0651 0.7303 0.0824
with CSM 0.9065 0.0646 0.7570 0.0756

4.5. Model Analysis

To demonstrate the effectiveness of our deep model, we also
evaluate the results of our algorithm with different model set-
tings on ECSSD and DUT-OMRON datasets. The results are
shown in Table 2. It can be seen that the model with CSM
significantly improves the performance of saliency detection.
Comparison with the model without CSM, our full model im-
proves the maximum F-measure by 1% and 3.7% on ECSSD
and DUT-OMRON datasets respectively, and simultaneously
decreases the MAE by 1% and 8%.

5. CONCLUSIONS

In this paper, we propose a novel end-to-end deep saliency al-
gorithm by exploiting the multi-path features, which lead to
the performance improvement in saliency detection. More-
over, a coupled structure module is designed to obtain more
fine-grained saliency results. The proposed model is efficien-
t and can generate the accurate saliency maps without post-
processing. Comprehensive experiments demonstrate the ad-
vantages of our MPFFNet. However, our model also has a



limitation, that is some parts of the detected salient object is
incomplete in challenging scenarios. In the future, we will
consider to use the relationship between the object parts to
improve the saliency detection.
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