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ABSTRACT

A novel end-to-end fully convolutional neural network for
saliency detection is proposed in this paper, aiming at re-
fining the boundary and covering the global context (GBR-
Net). Previous CNN based methods for saliency detection are
universally accompanied with blurring edge and ambiguous
salient object. To tackle this problem, we propose to embed
the boundary enhancement block (BEB) into the network to
refine edge. It keeps the details by the mutual-coupling con-
volutional layers. Besides, we employ a pooling pyramid that
utilizes the multi-level feature informations to search global
context, and it also contributes as an auxiliary supervision.
The final saliency map is obtained by fusing the edge refine-
ment with global context extraction. Experiments on four
benchmark datasets prove that the proposed saliency detec-
tion model gains an edge over the state-of-the-art approaches.

Index Terms— Saliency detection, Boundary refinement,
Global context, Pooling pyramid

1. INTRODUCTION

As a classic task in computer vision, saliency detection refer-
s to identify the most important and conspicuous objects or
regions in an image. Working as a pre-processing step, it con-
tributes a lot to researches and applications in computer vi-
sion, such as object detection [1], image classification [2], se-
mantic segmentation [3] and person re-identification [4]. Al-
though DCNNs are beneficial to saliency detection and reach
accurate solutions [5, 6, 7, 8] compared with the hand-crafted
features based methods [9, 10, 11] in recent years, it still re-
mains unsolved problems. Because saliency object is varie-
gated as its color, location, size and category from the raw
image, it’s hard to give a generalized detection method.

As an important step in image understanding, saliency de-
tection attracts a lot of attention. At present, a number of deep
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Fig. 1. Examples of the weakness in conventional meth-
ods. From top left to bottom right: image, ground truth
mask, our saliency maps, and saliency maps of other five lat-
est approaches, including MDF [12], MTDS [13], DCL [6],
DHS [14], UCF [7], RFCN [5], ELD [8].

neural networks based methods are applied for saliency de-
tection. MDF [12] utilizes multiscale deep features to train
the visual saliency model. MTDS [13] models the semantic
properties of salient objects effectively, it takes a data-driven
strategy for encoding the underlying saliency prior informa-
tion. DCL [6] proposes a deep network with two complemen-
tary components, one is the pixel-level fully convolutional
stream and the other is segment-wise spatial pooling stream.
As Fig. 1(d, e, f) show, these methods can approximately
model the shape of salient object, but they are not highlighted
compared with the ground truth. On the other hand, DHS [14]
uses the global structured saliency cues to perform the global
prediction, then adopts a hierarchical recurrent convolution-
al neural network to refine the details. UCF [7] and RFC-
N [5] are both improve the accuracy with learning abundant
high-level information. ELD [8] generates the saliency map-
s with high and low level features fused. As Fig. 1(g, h, i,
j) illustrate, these approaches highlight the salient objects but
the boundary is fuzzy. Especially the connection between the
multi salient objects is ambiguous.

A lot of researches focus on highlighting the salient object
and refining edge, but it still needs improvements for realistic
requirements. To cope with above drawbacks in convention-
al methods, we use a single end-to-end network to model the
raw image for saliency detection. To refine the boundary, we
design a boundary enhancement block (BEB) embedded into
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the network, which keeps the details by the mutual-coupling
convolutional layers. To gather the global information, we u-
tilize the multiple convolution layers by pooling pyramid and
combine them as the extra supervision, such that we can ac-
quire semantic information at different levels but very few ex-
tra costs.

Based on the above considerations and motivations, a nov-
el end-to-end fully convolutional neural network for saliency
detection is proposed, which can highlight the salient object-
s and preserve the boundary information. In summary, this
paper has the following contributions:

• A new saliency detection framework is proposed to re-
fine the boundary and gather the global context simul-
taneously. Experiments on several benchmark datasets
demonstrate that our deep model performs favorably a-
gainst the state-of-the-art methods.

• We design a boundary enhancement block consisting
of mutual-coupling convolutional layers through which
we can maintain the completeness of salient objec-
t boundary information.

• We also employ the pooling pyramid for global context
gathering in our deep network to fuse the semantic in-
formation at different levels, such that we can obtain
more global information.

2. THE PROPOSED APPROACH

In this paper, we propose an end-to-end fully convolutional
network to search the global context and refine the bound-
ary at the same time with very few extra costs. We use the
raw image I as the input image without any pre-processing.
Section 2.1 describes the network architecture integrally and
expounds the global context gathering part. Section 2.2 intro-
duces the BEB used for boundary refinement in detail.

2.1. Network Architecture

As illustrated in Fig. 2, the network architecture consists of
a general VGG16 [15], which is pre-trained on ImageNet.
To refine the boundary, three BEBs are embedded into the
network. We also employ the pooling pyramid to combine
the feature maps of conv3-3, conv4-3, conv5-3 for gathering
global context information. It is shown as the upper branch
with blue mask in Fig.2. Pooling pyramid is helpful to further
improve detecting the salient objects with accurate boundary,
since it’s covering the multi-level context structures which are
significant for dense prediction. Although the resolution of
feature map is various, global average pooling is to change Fi
into 1× 1 resolution. It can be formulated as

Fpp = CAT(F̃3−3, F̃4−3, F̃5−3), (1)

where F̃i is the output of Fi after global average pooling. Fpp
is the result of pooling pyramid by concatenation. Pooling
pyramid can maintain the global context structures while it
loses details. Then, we change the resolution of combined
feature map Fpp to 64× 64 by upsampling in our case so that
it can be fused with conv5-3. It can be formulated as

Fppout = SUM(F5−3,Upsamp(Fpp)), (2)

where Fppout is the output of the pooling pyramid branch.
The upper branch is regarded as extra supervision and its out-
put is fused to the final result.

The loss function of the network is the cross entropy be-
tween saliency map Sj and ground truth G. It has five super-
visions in the network: one of them is master loss and others
are auxiliary. The j-th loss function is defined as:

Lossj(Θ) =
∑
Sj

Sij logP (Sij = 1|Gi,Θ)

+
∑
Sj

(1− Sij)logP (Sij = 0|Gi,Θ),
(3)

where Θ is the collection of all parameters of our GBRNet.
Since we compute the loss function in pixels, we denote the
saliency map as Sj = {Sij , j = 1, ..., 5, i = 1, ..., |S|} and the
ground truth as G = {Gi, i = 1, ..., |G|}. The final supervi-
sion for our model is the combined effect of all loss function-
s. Multiple supervisions jointly train our model and optimize
the parameters for highlighting salient objects and refining the
contour.

2.2. Boundary Enhancement Block

Inspired by GCNet [16], in which they proposed a BR mod-
ule to refine the boundary in conjunction with the large kernel
at the end of the network, we design a boundary enhance-
ment block(BEB) to optimize the blurring edge in training
stage. BEBs are used for modeling the boundary representa-
tions from low-level stages to high-level stages. In some early
methods, boundary information is not taken into account. Re-
cently, researchers start to employ a special network to refine
the boundary information by training the local context. Al-
though it does work in some cases, the extra network branch
requires pre-processing training data, such as superpixel seg-
mented images [17]. The BEB is embedded into the main
network structure directly which is illustrated in Fig. 3(a).

Given a BEB, the inputs of which are the outputs of
conv2-2, conv3-3, conv4-3 layers Fi. Here, we employ three
branches to refine the i-th block’s input and the corresponding
output remains the same resolution of the input. One advan-
tage of BEB is that it maintains the characteristics of the orig-
inal network in spite of the depth increasing. Thus, there is no
need to do any adjustment after embedment. Meanwhile, we
can objectively evaluate the contributions of BEB compared
with the general VGG16 [15].
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Fig. 2. The structure of the proposed network for boundary refinement and global context gathering(GBRNet). The lower
branch is the VGG16 embedded with BEB for boundary refinement. The higher branch is the pooling pyramid for global
context gathering.

Structure details. As illustrated in Fig. 3(a), one branch
connects the input and output directly without any operation.
Another two branches, Fi∗d1 with left dilated convolution op-
eration and Fi∗d2 with right dilated convolution operation,
are similar. Both Fi∗d1 and Fi∗d2 branches consist of a dila-
tion convolutional layer following a 1× 1 convolution kernel
and the output dimensions is the same as the Fi. A minute
difference in operation of left and right dilated convolution
is dilation size for detecting the information at multi spatial-
scale in an image. So BEB can be formulated as

Fi = Fi +
∑
jε(0,1)

Fi∗dj . (4)
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(a) The structure of BEB. (b) The explanation for the inter-
coupling kernel.

Fig. 3. The BEB and the intercoupling kernel.

Intercoupling kernel. The ∗d is defined as the dilated
convolution operation [18]. F : Z2 → R is a discrete func-
tion, and k : Ωr → R is a 3 × 3 discrete filter, where Ωr
= [−r, r]2 ∩ Z2. The * is the discrete convolution operator.
Such that the ∗d is defined as

(F∗dk)(p) =
∑

s+dt=p

F (s)k(t). (5)

Let ∗d1 and ∗d2 be the dilation factor of the left and right
branches, respectively. When they work at the same time,
it is easy to obtain that the respective field of each kernel is
(4d− 1)

2. As for Fi∗d1 and Fi∗d2, dilation size is differ-
ent, since the right one is always twice larger than the left
one. Therefore, such two dilation kernels are intercoupling
all the time. Considering the dilation size [2,4] illustrated
in Fig. 3(b), the red points stand for d2=4, and red mask is
the respective filed of kernel size with 4-dilation equaling to
(4× 4− 1)2 = 225. Although the large dilation is helpful to
extract regions with wider respective field and keep the res-
olution, it still ignores the central part since most parameters
among the central kernel are zero. As a remedy, BEB takes
another 2-dilated kernel in blue mask, with its respective field
equaling to (4 × 2 − 1)2 = 49, to cover the central region
again to emphasize the most important central region as an
intercoupling kernel.

Fig. 4. The performance of BEB and pooling pyramid (PP).
From left to right: image, without BEB or PP, only with BEB,
with BEB and PP and ground truth mask.

Fig. 4 shows the performance of BEB and pooling pyra-
mid. BEB can refine the boundary and highlight the object
distinctly. Pooling pyramid can also further improve the ac-
curacy by clearing background.

3. EXPERIMENTS

In this section, we demonstrate the effectiveness of proposed
network and compare against state-of-the-art methods on four
salient detection benchmarks.
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Fig. 5. Comparison of PR curves between our proposed algorithm and other state-of-the-art methods.

Table 1. Comparison of F-measure (higher value is better) and MAE (lower value is better) on ECSSD, PASCAL-S, HKU-IS
and DUT-OMRON datasets. The best two results are shown in red and blue fonts, respectively.

Method ECSSD PASCAL-S HKU-IS DUT-OMRON
maxFm MAE maxFm MAE maxFm MAE maxFm MAE

DRFI(CVPR13) [19] 0.786 0.164 0.690 0.281 0.783 0.143 0.664 0.150
RBD(CVPR14) [9] 0.716 0.171 0.655 0.273 0.726 0.141 0.630 0.141
BL(CVPR15) [10] 0.755 0.217 0.659 0.318 0.723 0.206 0.580 0.240

MDF(CVPR15) [12] 0.831 0.105 0.764 0.142 0.861 0.129 0.694 0.092
ELD(CVPR16) [8] 0.868 0.079 0.771 0.121 0.881 0.063 0.705 0.091
MTDS(TIP16) [13] 0.882 0.122 0.760 0.175 - - 0.745 0.120

RFCN(ECCV16) [5] 0.898 0.095 0.832 0.118 0.888 0.080 0.738 0.095
DCL(CVPR16) [6] 0.901 0.075 0.810 0.115 0.907 0.055 0.756 0.086
UCF(ICCV17) [7] 0.903 0.069 0.818 0.116 0.888 0.061 0.730 0.120

GBR(OURS) 0.909 0.066 0.824 0.107 0.893 0.055 0.758 0.074

3.1. Datasets and Evaluation Criteria

We evaluate our method on four standard benchmark dataset-
s: ECSSD [20], PASCAL-S [21], HKU-IS [17] and DUT-
OMRON [22]. We take three metrics: precision-recall curve
(PR curve), F-measure and mean absolute error (MAE), to e-
valuate the competitiveness of all salient detection algorithm-
s. The PR curves are obtained by the generated binary mask
from the saliency map compared with the ground truth. And
F-measure is formulated as

Fw =
1 + ω2 ∗ precision ∗ recall
ω2 ∗ precision + recall

, (6)

where w2 equals to 0.3 like the most precious works. Then let
Ŝ and Ĝ remark the saliency map and the ground truth which
are normalized to [0,1] so that the MAE is computed by

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|Ŝ(i, j)− Ĝ(i, j)|, (7)

To clearly evaluate the performance of these saliency algo-
rithms, we also provide few quantitative results of F-measure
and MAE with nine representative algorithms, including six
deep learning based methods, on four datasets (Table1). It
can be seen that our algorithm significantly outperforms oth-
er state-of-the-art algorithms.

3.2. Implementation Details

We train our model on MSRA-B [23] dataset with 5,000 im-
ages and MSRA10K [24] dataset with 10,000 images. As
for BEB, we adapt the dilation size as [2,4], [4,8], [6,12] on
the 3 × 3 kernel, respectively. The number of channels is
set to 128, 256 and 512, respectively. Newly added layer-
s are defaultly initialized with Gaussian distribution with s-
tandard deviation 0. It is fine-tuned based on the pre-trained
VGG16 [15] for better comparison with previous works. The
hyper-parameters used in this work contain base learning rate
(1e-8), learning policy (step), stepsize (7,500), momentum
(0.90) and weight decay (0.0005). The entire networks are
implemented on the publicly available platform Caffe [25].

In the training phase, all five loss functions are taken for
training. Loss5 is from the master branch and Loss3 is from
the pooling pyramid branch. The deep supervision at the end
of the network aims to reuse the feature maps to the maxi-
mum extent with least costs. In the testing phase, only the
optimized master branch is used to predict the final result and
another four auxiliary ones are abandoned.

3.3. Performance Comparison

We compare the proposed saliency detection method with 9
latest state-of-the-art methods, including a) 6 deep learning
based methods: MDF [12], ELD [8], MTDS [13], RFCN [5],
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Fig. 6. Visual comparison with other state-of-the-art methods.

DCL [6], UCF [7] and b) 3 classic methods: DRFI [19], RB-
D [9], BL [10]. For fair comparison, we use either the salien-
cy maps or the implementations of these methods provided by
the authors.

F-measure and MAE. Table 1 shows that the proposed
model performs favorably against almost all the existing state-
of-the-art methods according to the evaluation criteria, in-
cluding deep learning based methods and classic ones. Our
method achieves top two on four test datasets over F-measure
and MAE, it shows the effectiveness of the proposed mod-
el. Especially the GBRNet outperforms other methods over
MAE on all four datasets. On ECSSD and DUT-OMRON
datasets, which contains 1,000 and 5,618 images with pixel-
wise annotation of salient object, respectively, our model also
performs best over F-measure. On PASCAL-S and HKU-IS
datasets, the GBRNet performs second place over F-measure.

PR curve. As illustrated in Fig. 5, our method performs
best at the beginning of the PR curve, since our saliency maps
are closely match to the ground truth masks. At the end of
the PR curve, our method is still very competitive with other
approaches. It can be reasonable believed that our method
is very potential and efficient to the multiple salient objects
detection task with the augmentation of the training dataset.

Visual comparison. Fig. 6 shows the visual compari-
son between our proposed approach for saliency detection and
other mentioned methods. We can see that our saliency maps
obtain the accurate shape of the salient objects, meanwhile, it
preserves the smooth boundary which is significant for salient
objects.

Running time. It takes us about 12 hours to train our
model on a NVIDIA GTX-1080Ti GPU and Intel E5-2630
CPU processor. It only cost 0.045s for each image of average
size 400 × 300 without any pre/post-processing. It’s high-
efficiency compared with most existed convolutional meth-
ods. It’s easy to extend the proposed method and apply it to
videos.

3.4. Ablation Studies

To strictly evaluate the effect of BEB and pooling pyramid,
respectively, we perform a contrast experiment. For fair com-
parison, we only take out BEBs and pooling pyramid with
Loss3 of GBRNet (see Fig. 2) as the baseline model. And
we embed BEB/pooling pyramid into baseline model to eval-
uate them, respectively. Finally we put both BEB and pool-
ing pyramid into the network as the final model to evaluate
the performance. As shown in table 2, the baseline model
with BEB and pooling pyramid performs best and the base-
line model only with BEB/pooling pyramid has the nearly
second highest performance. Especially, on ECSSD dataset,
BEB can decrease by 12% over MAE (from 0.076 to 0.067)
and pooling pyramid increases by 1% over F-measure (from
0.896 to 0.909). On PASCAL-S dataset, BEB and pooling
pyramid both can decreases by 6.8% over MAE (from 0.118
to 0.111/0.110). It demonstrates that BEB and pooling pyra-
mid are works a lot for the saliency detection.

Table 2. Comparison of F-measure and MAE on ECSSD and
PASCAL-S datasets to evaluate the performance of BEB and
pooling pyramid. ’PP’ in the third row refers to the pooling
pyramid.

Method ECSSD PASCAL-S
maxFm MAE maxFm MAE

Baseline 0.896 0.076 0.812 0.118
Baseline+BEB 0.899 0.067 0.818 0.110
Baseline+PP 0.902 0.070 0.818 0.111

Baseline+BEB+PP 0.909 0.066 0.824 0.107

4. CONCLUSIONS

In this paper, we propose a novel fully convolutional network-
s for salient detetcion without any pre/post-processing. It can
refine the boundary and cover the global context at the same
time. This proposed method solves the problem that salient
objects are always ambiguous with blurring edge in previous



networks. BEBs are embedded into the VGG16 to keep the
edge details with the mutual-coupling convolutional kernels,
which can emphasizes the most important central region. And
the pooling pyramid is utilized to search the global contex-
t. Experimental results on four standard benchmark datasets,
ECSSD, Pascal-S, HKU-IS and DUT-OMRON show our pro-
posed method outperforms other state-of-the-art methods.
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