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Abstract. Facial landmark detection is a necessary step in many vision
tasks and plenty of excellent methods have been proposed to solve this
problem. However, for the conditions with large pose and complex expres-
sion, these works usually suffer an eclipse. In this paper, we propose a
two-stage cascade regression framework using patch-difference features
to overcome the above problem. In the first stage, by applying the patch-
difference feature and augmenting the large pose samples to the classical
shape regression model, salient landmarks (eye centers, nose, mouth cor-
ners) can be located precisely. In the second stage, by applying enhanced
feature section constraint to the patch-difference feature, multi-landmark
detection is achieved. Experimental results show that our algorithm has
a significant improvement compared to the classical shape regression
method and achieves superior results on COFW dataset.
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1 Introduction

Facial analysis and processing technologies become hot topics in recent years.
Facial landmark detection aims to find the feature points of organs (nose, eyes,
mouth and cheek). This technique has extensive applications, such as face recog-
nition [5], face tracking [21], facial beautification [6], expression recognition [14].
It is time consuming and inefficient to detect one landmark with a respective
model and the most popular way is to treat all landmarks as a whole. Cascade
shape regression model can efficiently regress all the landmarks at the same time
and lots of approaches [4,7,11,15] based on this model have been proposed. How-
ever, as these methods hardly handle the scenarios of large pose and complex
expression, the accuracy obviously decreases on dataset with these situations.

There are two main reasons for the above problem. One reason is that features
are unstable and don’t contain enough information. For instance, the famous
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pixel-difference feature [4] which is the intension difference between two pixels.
The pixel-difference feature plays an important role in the tree-based cascade
shape regression methods. Though the feature is highly efficient, the pixel is
sensitive to noise and too less information is used. Additionally, the pixel pairs
are selected from a large number of candidates and it is a problem to select the
most useful ones. In order to address the above problems, this paper proposes a
patch-based feature to improve the performance of classical cascade regression
methods. We use mean of image patch to replace the pixel to enhance the abil-
ity of noise immunity. The feature is normalized to make it scale-invariance at
the same time. The new feature is more robust on variation of occlusion and
illumination. In the procedure of selecting the best features from a large pool,
we also propose a new feature selection constraint. Researchers [11] show that
the closer between the pixel pairs, the features are better. We assume that each
pixel has its nearest landmark and the new constraint: the distance between the
pixel pairs should be smaller than the distance between their respective nearest
landmarks. By combining these two constraints, the selected features are better.

Another reason for the above problem is that the datasets don’t contain
enough variations of pose and expression. For example, LFPW [2] (29 landmarks)
is a dataset with little variation and LBF [15] can achieve the mean error of
3.35%. Another method cGPRT [13] reports a result of 4.63% on HELEN [12]
(194 landmarks) dataset. However, the mean error on challenging set of 300W
(68 landmarks) is around 10%. In first two data sets, most of the faces are natural
and frontal, 300W challenging set contains many large pose faces that include in-
plane and out-of-plane. In terms of the large roll angles, such as over 30◦, testing
data is much more than training data. We can see from Table 1, it is hard to
get a good model on the data without enough pose variations. In this paper,
we use a hard samples augmentation method to enrich the diversity of dataset.
The idea of data augmentation is motivated by deep learning methods. The
training data for deep learning methods are massive by leveraging preprocessing
(translation, rotation, horizontal flip and compression), generally over half of a
million. Aiming at large pose, we enlarge the training data through rotation and
apple it to the cascade shape regression methods. However, the training capacity
of conventional methods is from thousands to tens of thousands, only a small
number of hard samples with large roll angles are selected for augmentation. In
this way, training data in the same order can produce a better model and give
better results.

In this paper, based on the patch-difference feature, we propose a two-stage
cascade regression facial landmark detection method. We mainly cope with the
scenario of large pose and improve the robustness of features for classical cascade
regression. In summary, the contributions of this paper are:

– We propose a new patch-difference feature for tree-based cascade regression
framework. By leveraging the patch information, our method is more accurate
and has little affect to efficiency.

– We propose an enhanced feature selection constraint by using the information
of the nearest landmarks of the feature pairs.
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– A data augmentation method is used for face alignment that only a small
number of large pose samples are augmented.

The remainder of this paper is organized as follows: Sect. 2 provides an
overview of related work. Two-stage cascade regression method is presented in
Sect. 3. Section 4 shows the experimental results and analysis. Section 5 is the
conclusions.

2 Related Work

Facial landmark detection raises from last century and plenty of work have been
proposed up to now. Generally, these approaches can be categorized into tradi-
tional methods and deep learning methods.

2.1 Traditional Methods

In recent years, the shape regression models [4,7,11,15,18,22] are extensively
applied in face alignment. Cascade shape regression model is first used in [7] to
estimate the facial shape and it is widely used in this field. ESR [4] directly learns
a regression function to infer the shape from a sparse subset of pixel intensities
indexed relative to the current shape estimate. Ensemble of Regression Trees
(ERT) [11] substitutes the fern weak regressor in ESR [4] with a regression tree
and limits the distance between the pairwise feature points to achieve a better
result. Local Binary Feature (LBF) [15] proposes to learn local binary feature for
each landmark independently and jointly regresses for all landmarks. Supervised
descent method (SDM) [22] predicts shape increment by employing a cascaded
linear regression based on SIFT features. GSDM [21] improve the performance
of SDM [22] by computing the gradient in global. CFSS [26] applies the idea
of coarse-to-fine to do shape searching in the sub-region and the results are not
affected by the initial shape. Similar to ESR [4], LBF [15] and cGPRT [13],
we focus on discriminative feature and propose a new feature to improve the
performance.

2.2 Deep Learning Methods

Deep learning methods are the most popular in present. Sun et al. [16] first
apply cascaded deep convolution network to estimate the position of five facial
landmarks and refine the position of landmarks level by level. Zhou et al. [25]
also use multi-level deep networks to detect facial landmarks in a coarse-to-fine
manner. Honari et al. [9] present Recombinator Networks by using multi-scale
input maps for learning coarse-to-fine feature. TCDCN [24] proposes a multi-task
learning method that employs auxiliary facial attribute recognition to obtain
correlative facial properties to improve the performance.
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3 Two-Stage Cascade Regression

3.1 Overview of Our Method

Our method includes two main parts: salient landmark detection and multi-
landmark detection. In the first stage, salient landmark detection is used to
obtain positions of salient landmarks, then an initial face is generated as input
for the next stage. Salient landmark set is the smallest subset that can roughly
represent the characteristic of a face. Therefore, it is rational to leverage this
information to generate the initial face for the next stage. The initial face is
computed by a linear combination of several similar faces. Similar faces are
obtained by searching from training samples according to distances between
each other. In this paper, Manhattan distance of salient landmarks is applied.
The weight wn for each similar face is computed as follows:

wn =
1
n + 1

n+1 + · · · + 1
N

N
(1)

where n = 1 represents the most similar one, N is the number of similar faces and
we use 19 similar faces, this formulation ensures that the more similar face has
a bigger weight. In both of two stages, tree-based cascade regression framework
is applied. Mean face and generated face are used as initialization in regression
procedure for two stages respectively. Training data augmentation and patch-
difference feature are used in the first stage to achieve the precise locations of
salient landmarks. Enhanced feature selection constraint is applied to patch-
difference feature in the second stage. Because salient landmarks are only 5
points, the distance between the nearest landmarks of pairwise points always
bigger than the distance between pairwise points. That is to say, the new feature
selection constraint is satisfied by default for salient landmark detection.

3.2 Tree Based Cascade Regression Model

A single regression model is insufficient for facial landmark detection in the wild
that contains large variations of pose, expression, illumination and occlusion.
Therefore, researchers tend to use a sequence of regressors to refine the results
step by step. Tree model is generally used in training procedure of the regressors.
Firstly, we give a brief introduction of cascade process. The shape of a face can
be presented as S = {Xj |j = 1, 2...p} ∈ �2p, p is the number of the landmarks,
Xj denotes the x, y-coordinates of the j -th landmark in a face image I. By
applying linear regression framework, formulation of cascade process is following:
Si,t+1 = Si,t + rt(I, Si,t), where rt represents the t-th regressor, Si,t represents
the current estimated shape of level t, Si,t+1 represents the shape of next level.
In this manner, the shape is updated step by step and increment for the shape
of next level is rt. And in each level, the regressor rt(I, Si,t) is learnt by solving
the following optimization problem:

rt = arg min
rt

L∑

i=1

‖S∗
i,t − Si,t − rt‖2 (2)
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where S∗
i,t is the ground-truth, L represents the number of training data.

Friedman [8] proposes gradient boosting tree algorithm to learn the regressor
rt and sum of square error loss is used in the algorithm. The number of levels is
usually over 10. The idea of coarse-to-fine is exploited in the procedure.

Obviously, the crucial process is to learn a regressor rt and we name it regres-
sion tree. The pixel difference feature is simple and geometric invariance in a
certain intension, but it doesn’t use the neighbor pixel information and is not a
normalized feature. This paper addresses this problem and solves it in the later
part. At each split node of the regression tree, threshold is applied to classify
the samples into different leaf node according to the pairwise pixel difference
value. Usually, at each node, we greedily select the best split from a number
of candidate splits that are randomly generated. The best one should minimize
the sum of the square error. Use θ to present the parameter set (τ , u and v),
τ is a threshold, u and v are positions of pairwise points. This process can be
represented in the following formulation:

E(M, θ) =
∑

s∈{l,r}

∑

i∈Mθ,s

‖ri − μθ,s‖2 (3)

μθ,s =
1

‖Mθ,s‖
∑

i∈Mθ,s

ri (4)

where M is the indices of training samples used in the node, Mθ,l is the set of
indices of samples that are classified into the left node judged by the threshold,
ri is the residual of sample i in the gradient boosting algorithm. By omitting
the parts that are independent of θ, the formulation above can be rewritten as
follows:

arg max
θ

E(M, θ) = arg min
θ

∑

s∈{l,r}
‖Mθ,s‖μθ,s

T μθ,s (5)

μθ,s is the only factor that is to be computed and the node split optimization is
efficient.

3.3 Patch-Difference Feature and Feature Selection

Pixel difference feature used in the regression tree is difference between intensities
of two pixels in an image, it is highly efficient and accurate. ERT [11] can achieve
1000 fps (frame per second) for 68 landmarks detection. The pixel difference
feature is simple and geometric invariance in a certain intension, but it is sensitive
to noise. We propose a patch-difference feature to cope with this problem and
try to use more potential information. Following is formulation used to compute
the features:

MP (u) − MP (v)
MP (u) + MP (v)

(6)

where MP (·) is a function that computing the mean of an image patch, con-
sidering of the efficiency, we compute the mean of a 3 × 3 patch. In this way,
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neighboring pixel information is used and the feature is a normalized form. This
feature measures the relative difference between two image patches and the for-
mulation in the same form as the Weber Fraction. The Weber’s Law [10] is that
the human perception of difference in stimulus is often measured as a fraction
of the original stimulus. This form is robust against illumination changes. By
leveraging the information of patches, this fraction form is robust to noise.

Candidates of features are generated randomly and this factor leads to a
big difference between good feature and poor feature. On the other hand, the
candidates pool should be big enough to make sure good features are contained.
It is necessary to select a number of good ones from candidates pool and other
work [11] has proposed a feasible measure. The constraint is that the pairwise
points have a bigger probability to be selected when the distance between them is
smaller. Exponential function is chosen to do this work, that is: e−λ||u−v||, where
|| · || represents the Euclidean distance, λ is the parameter to control distance of
the pairwise points. In this paper, we add an enhanced constraint that further
improves the performance. We assume that each point corresponding to a nearest
landmark. The additional constraint is that the distance between two landmarks
should be bigger than the distance of pairwise points. The formulation is as
follows,

||u − v|| < ||ul − vl|| (7)

where ul and vl are the nearest landmarks of u and v, we show it in Fig. 1.

Fig. 1. Blue dots represent estimated landmarks of level t, red triangles represent two
pixels. D is the distance between the pixel pair and DL is the distance between two
landmarks.

3.4 Hard Sample Augmentation

For facial landmark detection, diversity of the annotated data sets is limited. The
amount of the datasets from hundreds to thousands and most of the samples are
frontal faces with natural expression. The performance decreases obviously when
the faces have large variations in pose, expression, illumination and occlusion.
300W dataset is a good evidence to illustrate the above situation. This dataset
includes two subsets: the common set and the challenging set. The mean error
on common set is around 5% and the mean error on challenging set is around
10% for traditional methods.
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Table 1. The analysis of face pose of 300 W dataset. The numbers represent quantity
of samples with roll angle over 20◦, 30◦ and 40◦

300 W dataset Training (3148) Testing (689)

> 20◦ 83 34

> 30◦ 2 9

> 40◦ 0 2

The paper provides an analysis of face poses on the 300 W data set and roll
angle of a face is regarded as the face pose. We use salient landmark information
to analyze distribution of the roll angles. The roll angle is the angle between line
LA and the Y-axis. Line LA is consisted of midpoint of eye centers and midpoint
of mouth corners. The biggest roll angles of training and testing samples are 34◦

and 47◦. From Table 1, we can see that the training data is seriously insufficient
for large roll angles. The roll angle of training data is mainly below 30◦, while
some of testing samples with roll angle near 50◦. Our method is following, first,
the faces are classified into 5 categories (left, right, up, down and frontal) and
10 samples for each category are selected to be rotated ±30◦, ±40◦ and ±50◦.
In a normalized face, the relative location of the nose tip is used to decide the
category that a face belongs to. If nose tip at the left side of the center of the
face, it is left face and 10 samples with the largest horizontal distance in this
direction are selected. If nose tip on top of the center of the face, it is up face
and 10 samples with largest vertical distance in this direction are selected. For
frontal face, we choose 10 samples with the smallest Euclidean distance between
nose tip and the center. Original 300 W data set is 3148 and the augmented data
is 3448. The classified examples are showed in Fig. 2.

(a) (b) (c) (d) (e)

Fig. 2. These faces are samples of 5 different categories. The faces belong to up (a),
down (b), left (c), right (d) and frontal (e).

4 Experiments

Datasets: Two challenging datasets are used for facial landmark detection to
demonstrate our method achieves state-of-the-art performance. Faces of these
datasets have a big variation on pose, expression, occlusion, and illumination.

300W dataset: It is a 68 landmarks dataset and consists of two subsets, the
common subset and the challenging subset iBUG. Dataset configuration in [15]
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is used to have a fair comparison. The training set contains 3148 images. Test
set contains 689 images.

COFW dataset [3]: This dataset is annotated with 29 landmarks and mainly
contains the faces with heavy occlusion, training samples are 1345 and 507 sam-
ples for testing.

Evaluation metric: Standard mean absolute error is used in the experiments.
All errors are normalized by the inter-ocular distance and results in this section
are simplified form without ‘%’ symbol. For 300 W full set, Calculated Error
Distribution (CED) curves are plotted to give more visible results.

Parameter setting: In the training procedure, 20 randomly selected faces and
20 similar faces are used as initialization for salient landmark and multi-landmark
detection respectively. Cascade level T = 18 and 15 are for first stage and second
stage, K = 500 weak regressors form a strong regressor rt, D = 5 is the depth
of the regression tree. Shrinkage factor is 0.1. For node splitting, we repeat S
= 500 times to find the best one. Following the feature selection constraint, 400
pairwise pixels and a randomly chosen threshold corresponding to each pair is
used. The bounding boxes are provided in the database.

Table 2. Results of averaged error (%) are compared with state-of-the-art approaches
on 300W. Errors are normalised by the inter-ocular distance, and the results of other
methods are directly cited from the already published papers.

Method Common Challenging Full set

DRMF [1] 6.65 19.79 9.22

ESR [4] 5.28 17.00 7.58

RCPR [3] 6.18 17.26 8.35

SDM [22] 5.57 15.40 7.50

ERT [11] - - 6.40

LBF [15] 4.95 11.98 6.32

cGPRT [13] 4.46 10.85 5.71

CFSS [26] 4.73 9.98 5.76

TCDCN [24] 4.80 8.60 5.54

MDM [17] 4.83 10.14 5.88

RDR [19] 5.03 8.95 5.80

RAR [20] 4.12 8.35 4.94

Our method 4.36 8.70 5.21
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4.1 Comparison with Other Work

Table 2, a comparison with state-of-the-art methods is displayed. Compared
methods include DRMF [1], ESR [4], RCPR [3], SDM [22], CFAN [23], ERT
[11], LBF [15], cGPRT [13], CFSS [26], TCDCN [24], MDM [17], RDR [19] and
RAR [20]. We can see that our method outperforms all the conditional methods
and it is also comparable with deep learning method (TCDCN [24], MDM [17],
RDR [19] and RAR [20]). 300W challenging subset mainly focuses on large pose
and complex expression, with the help of hard sample augmentation, our method
is robust adequate for variation of pose and expression.
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Fig. 3. Comparison of CED curves on 300 W full set and challenging set.

We provide comparison of CED curves with state-of-the-art approaches on
300 W full set (Fig. 3(a)) and challenging set (Fig. 3(b)). Compared methods
include DRMF [1], ESR [4], ERT [11], LBF [15], CFSS Practical [26], and we
can see that our approach better than others. The compared methods are re-
implemented and some of the results are provided by authors. ESR [4] and ERT
[11] are reproduced by ourselves with the error of 7.76 and 6.42. The result of
LBF [15] is provided by the author, the codes of DRMF [1] and CFSS Practical
[26] are available online. We also show some visible results of 300 W datasets in
first two rows of Fig. 4. Though these faces with large variations in pose, our
method achieves good performance by applying the proposed method.

Table 3. Results of averaged error (%) are compared with state-of-the-art approaches
on COFW dataset.

Method ESR [4] RCPR [3] SDM [22] TCDCN [24] RAR [20] Our method

COFW 11.2 8.50 9.33 8.05 6.03 5.35
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Comparison with state-of-the-art methods on COFW dataset is showed in
Table 3. COFW dataset mainly focus on face with occlusion. This dataset is very
challenge due to lots of faces with heavy occlusions. Compared methods include
ESR [4], RCPR [3], SDM [22], TCDCN [24] and RAR [20]. From the Table, we
can see that our method is much better than other methods. With the help of the
salient-to-all manner, our method is robust under the conditions of occlusion.
Last two rows faces of Fig. 4 are challenging samples of COFW dataset due
to heavy occlusions. With the help of the proposed method, especially salient
landmark detection, the effect of occlusion is declined.

Fig. 4. Some challenging results of our method on 300 W and COFW dataset.

4.2 Incremental Analysis

In this paper, we propose three components to improve the performance and
each of them shows a benefit to the whole process. Traditional cascade regres-
sion (CR) model is used as the baseline and three experiments are conducted
to demonstrate effectiveness of our method. The three components are patch-
difference feature (PD), enhanced feature selection constraint (FS), and hard
sample augmentation (HSA). Both salient and 68 landmarks detection are con-
ducted and two-stage is not applied. The new feature selection constraint is not
applied in salient landmark detection because there are only 5 landmarks and
this constraint is default satisfaction. Table 4 shows the performance of the three
different components.
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Table 4. Incremental analysis on 300W dataset.

Method CR CR+PD CR+PD+FS CR+PD+FS+HSA

Salient 4.39 4.23 - 3.95

Multiple 6.42 6.34 6.20 5.94

5 Conclusions

This paper presents a two-stage cascade regression framework. Salient land-
mark detection is done in the first stage and multi-landmark are detected in
the next stage. Patch-difference feature, enhanced feature selection constraint
and hard samples augmentation are applied in our algorithm. By utilizing the
patch-difference feature and feature selection constraint, the feature maintains
efficient and contains more information. With the augmentation, our method
has a strong power to handle the condition with large pose. The performance
improves significantly and increased training data is small compare to the origi-
nal data. Our experiments are conducted on a single core Intel(R) Xeon(R) CPU
E5-2630 v3 @2.4 GHz and speed is 190 fps. Experiments on two challenging data
sets demonstrate the efficiency of our algorithm.
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