
ARTICLE IN PRESS 

JID: CAG [m5G; August 21, 2017;13:3 ] 

Computers & Graphics 0 0 0 (2017) 1–9 

Contents lists available at ScienceDirect 

Computers & Graphics 

journal homepage: www.elsevier.com/locate/cag 

Special Issue on CAD/Graphics 2017 

Better initialization for regression-based face alignment 

Hengliang Zhu 

a , ∗, Bin Sheng 

a , Zhiwen Shao 

a , Yangyang Hao 

a , Xiaonan Hou 

a , 
Lizhuang Ma 

a , b 

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China 
b Department of Computer Science and Software Engineering, East China Normal University, Shanghai, China 

a r t i c l e i n f o 

Article history: 

Received 15 June 2017 

Revised 27 July 2017 

Accepted 29 July 2017 

Available online xxx 

Keywords: 

Neighborhood representation prior 

Occlusions 

Projected initial shape 

Cascade regression 

a b s t r a c t 

Regression-based face alignment algorithms predict facial landmarks by iteratively updating an initial 

shape, and hence are always limited by the initialization. Usually, the initial shape is obtained from the 

average face or by randomly picking a face from the training set. In this study, we discuss how to improve 

initialization by studying a neighborhood representation prior, leveraging neighboring faces to obtain a 

high-quality initial shape. In order to further improve the estimation precision of each facial landmark, 

we propose a face-like landmark adjustment algorithm to refine the face shape. Extensive experiments 

demonstrate our algorithm achieves favorable results compared to the state-of-the-art algorithms. More- 

over, our algorithm achieves a smaller normalized mean error than the human performance (5.54% vs. 

5.6%) on the challenging dataset the Caltech Occluded Faces in the Wild (COFW). 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face alignment is defined as the localization of facial landmarks

uch as eyebrows, eyes, nose tip and mouth corners. Efficient

ace alignment is critical in multimedia applications and often re-

arded as a pre-processing step for many vision tasks, such as

ace recognition [1,2] , expression analysis [3–5] , face makeup [6,7] ,

nd 3D face modeling [8–10] . However, accurate and robust land-

ark localization remains a big challenge for in-the-wild images

hat contain severe occlusions and large head rotations. In most

egression-based algorithms, the bottleneck of this problem is the

nitialization, since a poor initial shape may subject face alignment

nto local optimum. The conventional algorithms trivially make use

f the mean shape as initialization during testing, or randomly

hoose shapes from the training images during training [11–13] .

ue to large occlusions and pose variations, poor initialization may

ause the failure of face alignment. In this study, we aim to exploit

 simple yet effective initialization algorithm that deals with these

omplex face images. 

Recently, some algorithms have been proposed to improve the

nitial face shape [14–19] , but they fail in the case of heavy oc-

lusions and complex variations of poses and expression. These al-

orithms [14,16] use 3D information or other involved processes

o get the initial shape. However, these algorithms cannot meet
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eal-time applications requirements due to complexity and time

onsumption. Therefore, efficient initialization is still a challenge

n cascade regression. Since a face can be approximated by a lin-

ar combination of similar faces ( Fig. 2 (a)), finding a good initial-

zation algorithm means to search for the right facial neighborhood

nd compute how it should be weighted. However, it is difficult to

nd the neighborhood of a face, since its landmarks positions are

nknown initially. To deal with this problem, we contribute our

tudy, which leverages a sparse set of points to approximately find

eighboring faces, which estimate 5 key points: two pupils, a nose

ip, and two mouth corners. It is worth noticing that these facial

oints can approximate the face shape and pose ( Fig. 1 ). A sub-

et of multiple points (e.g. the aforementioned points) is easier to

btain and more robust to occlusions [20] . As shown in Table 2 ,

he mean errors of the 5-point set are lower than the 68-point

et. The reason is that these sparse points are the most prominent

n a face and can achieve good performance even in variations of

cclusion, pose and expressions. Furthermore, we found that the

eighboring faces and weight coefficients on the proposed subset

an be well applied to the full set of facial landmarks ( Fig. 2 (b)).

iven those experiments, we propose a neighborhood represen-

ation prior: Based on the face similarity computed on the subset,

e can approximate the multi-point shape well using its neighboring

aces. 

More specifically, the point information of the subset can be

sed to generate a high-quality initial shape, which reduces the er-

ors of facial landmark detection. Based on the above observations,

e propose a simple yet efficient algorithm to produce a desir-

ble initialization, called the projected initial shape (PIS). We also
egression-based face alignment, Computers & Graphics (2017), 
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Fig. 1. Some experimental results on the COFW dataset and the images with heavy 

occlusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The speed and mean errors by the inter-ocular distance on 

300W. 

Result Mean errors Total time (ms) 

Baseline + 5 points 5.58 4.48 

Baseline + 8 points 6.12 4.80 

Baseline + 14 points 6.10 5.08 
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propose a face-like landmark adjustment algorithm for shape fine-

tuning and final initialization. After that, the location of key fa-

cial points is improved in detail. The PIS can significantly improve

both accuracy and robustness of face alignment. Experimental re-

sults show our new strategy is more efficient in dealing with heavy

occlusions and large pose variations. 

In this paper, we handle the problem of finding initial face for

cascade regression-based algorithms. Our main contributions are

summarized as follows: 

• We propose a neighborhood representation prior to approxi-

mate the target face shape. The experimental results demon-

strate the effectiveness of our assumptions. 
• An efficient face alignment algorithm, utilizing the neighbor-

hood representation prior, and a face-like landmark adjustment

algorithm, is used to generate a better initial shape. 
• Extensive experiments demonstrate the efficiency and robust-

ness of our initialization scheme. 

The paper is organized as follows. Section 2 reviews the related

work. Then, the detail of the neighborhood representation prior

is presented in Section 3 . Section 4 depicts the details of our al-

gorithm, and Section 5 demonstrates the experimental results and

discussions. Finally, the conclusion is given in Section 6 . 

2. Related work 

In this section, we mainly review research related to our work.

In recent years, a number of regression-based algorithms have

been proposed and have become popular for detection of facial

landmarks [21–23] . These algorithms learn the feature mapping

function from image appearance to the final shape. The classic ac-

tive appearance model (AAM) [21] uses the difference between the
Fig. 2. The information (neighboring faces and weights) attained from the subset can be

weight coefficients. The errors are the distance between the predicted points and the gro

Please cite this article as: H. Zhu et al., Better initialization for r
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urrent appearance estimate and the target image to drive an op-

imization problem. However, AAM is unfeasible for images with

cclusions and large pose variations. Later, the fast AAM for face

lignment was proposed [22] . Xiong and De la Torre [24] proposed

 supervised descent algorithm to solve nonlinear least square

roblems based on scale-invariant feature transform (SIFT) [25] .

hen a global supervised descent algorithm is proposed and per-

orms well in facial tracking [26] . These algorithms may be difficult

o handle complex scenarios, and fail to predict the landmarks ac-

urately. Since feature descriptors that are extracted at occluded

reas will greatly affect the update of the face shape at each it-

ration. It might result in a shape that is far away from the true

andmarks. 

A new cascaded shape regression (CSR) in face alignment is

ighly efficient in both training and testing. CSR algorithms use

he image features to estimate the facial points in a cascaded

ay. For example, an explicit shape regression algorithm for face

andmark location contains two-level regressors for shape estima-

ion [11] . Kazemi and Sullivan [12] detected the landmarks by using

n ensemble of gradient regression trees. Ren et al. [13] further im-

roved this algorithm [11] and designed local binary features for

hape regression. Burgos-Artizzu et al. [27] designed an occlusion-

nvariant face alignment algorithm that used shape indexed fea-

ures and detected occlusions explicitly. Lee et al. [28] used cas-

ade Gaussian process regression trees (cGPRT) for face alignment

y using shape-indexed difference of Gaussian features to achieve

obustness against geometric variances of faces. Wu and Ji [29]

roposed a robust cascaded regressor to handle large pose and

evere occlusions. Based on explicit head pose estimation, Yang

t al. [16] presented a supervised initialization scheme for cascaded

ace alignment. Deng et al. [30] proposed a multi-view, multi-scale,

nd multi-component cascade shape regression (M3CSR) model for

andmark prediction. Yang et al. [19] developed a spatio-temporal

ascade shape regression (STCSR) model for robust facial tracking. 

Most of the aforementioned algorithms start from a mean

hape, and optimize the face shape iteratively. However, with a

oor or wrong initialization, regression-based algorithms usually

rap into local optimum [31] . By taking advantages of the neigh-

orhood coherence in face similarity, our algorithm is fast, and can

enerate a high-quality initial shape closer to the true location. In

rder to alleviate the sensitivity to initialization, we propose a face
 applied to the full set and still be a good approximation. The front numbers are 

und truth, normalized by the inter-ocular distance. 

egression-based face alignment, Computers & Graphics (2017), 
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Fig. 3. Six groups of the key subset points. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Normalized mean errors by the inter-ocular distance on 300W. 

Our re-implemented results with 5-point set and the 68-point 

set. 

Algorithm (ERT) 5 points 68 points 

Original paper – 6.40 

Our re-implementation (baseline) 4.31 6.55 
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rior to obtain a better initial shape, which can significantly im-

rove the performance of regression-based algorithms. In Section 4 ,

e show our algorithm improves the accuracy and robustness in

ealing with heavy occlusions. 

. Neighborhood representation prior 

It is well-known that a face is approximately composed of a

inear combination of its neighboring faces. However, the full set of

ey points is unknown in the beginning. Fortunately, we find the

ubset of points can be accurately obtained by using the cascade

egression model ( Table 2 ). Thus, we search neighboring faces in

he subset and apply them into the full set to get an initial shape. 

Define V k = { v k 
i 
| i = 1 , ..., N} , where v k 

i 
is a k ∗2 Dim vector rep-

esenting a k -point set of the i th face in set V k , and N is the num-

er of training samples. V 68 is the full set, since the largest number

f points used here is 68. 

Given v k 
i 
, we compute the Cosine similarity distance to search

ts m nearest neighbors, with the index in V k being { u 1 , . . . , u m 

} ,
here m < k ∗2. Then we compute weight coefficients to represent

 

k 
i 

by its nearest neighbors V = { v k u 1 
, . . . , v k u m 

} : 

 w 

∗
1 , . . . , w 

∗
m 

} = arg min 

w 

N ∑ 

i =1 

‖ v k i −
m ∑ 

j 

w j v 
k 
u j 
‖ 

2 
2 . (1)

e also expect the reconstruction error is small and expressed as

 i (k, m ) = ‖ v k i −
m ∑ 

j=1 

w 

∗
j v 

k 
u j 
‖ 

2 
2 . (2)

We apply the selected neighboring faces and weight coefficients

btained in the subset into the full subset. The average reconstruc-

ion error can be calculated as 

 (k, m ) = 

1 

N 

N ∑ 

i 

1 

‖ v k 
i 
‖ 

2 
2 

e i (k, m ) , (3)

here 1 

‖ v k 
i 
‖ 2 

2 

is used for energy normalization, k is the dimension

f the subset, and m is the number of neighboring faces . 

In order to verify the neighborhood representation prior, we

arry out experiments on the dataset 300 Faces in-the-Wild

300W). In this prior, a face can be represented as a linear combi-

ation of its neighboring faces, and we use parameters k and m to

argely reduce the reconstruction error of Eq. (3) . In complex sce-

arios, a larger number of facial landmarks further complicates the

rediction. The human visual system suggests that the most impor-

ant parts on a face are eyes, nose and mouth, which depict a face

nd always first attract attention from other people. Therefore, we

elect the most representative points to form a subset, and achieve

ubset of 68 points through regression [12] . Also, a larger number

f test points would decelerate the prediction. In order to keep the

ast speed and attain high accuracy at the same time, we design

ix groups of key subset points, as red points shown in Fig. 3 . From

op to bottom, they are 5, 6, 7, 8, 12 and 14 points, respectively.

e can see that eyes, nose tip and mouth corners are all included

n each group. For each group, the subset points are calculated di-

ectly from the multiple points (ground truth). We then calculate

he average error for each group on 300W. The final results of e ( k ,

 ) is illustrated in Fig. 5 . 

Fig. 5 shows that, in ideal conditions, a larger number of k fa-

ial points in the prior means a lower average error. But in prac-

ical scenarios, if k is too large, it is hard to predict point posi-

ions under the condition of large pose and occlusions. The aver-

ge error minimizes when the number of similar faces is within

8, 10]. It is noteworthy that the error of the 6-point group, which

as one point on the face contour, is lower than the 7-point group,
Please cite this article as: H. Zhu et al., Better initialization for r
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ndicating the point on the face contour is also very important for

hape estimating. Moreover, the computational cost to predict key

oints increases when k increases, and so we are presented with a

rade off. Further, for complex face databases, mean error can ac-

ually increase as k increases. Table 1 shows the performance of our

lgorithm when 5, 8 and 14 landmarks are included in the prior

n the complex 300W dataset. The baseline algorithm is ERT [12] .

herefore, a more accurate key point detector helps us to generate

 high-quality initial shape. 

In addition, there are many algorithms for accurate location of

 points [20,32] . These algorithms have successfully applied deep

onvolution networks to locate the key points, but they are not fast

nough. In practical applications, fast speed is crucial in real-time

andmark tracking. In this study, we take speed and accuracy into

onsideration, and focus on the 5-point group. As shown in Table 5 ,

e can see that the five point detection takes less than 0.6 ms per

mage (about 1850 fps). In the future, we will utilize more points,

uch as 6 or 8 points, to generate a better initialization and acquire

ore accurate results. 

. Our algorithm 

.1. Initial prior 

Based on the neighborhood representation prior, we propose

n efficient and robust algorithm to approximate the facial land-

arks. First, a 5-point detector is trained by using a cascade re-

ression model [12] . Then this detector is used to locate the five

ey points for a face, including two left–right pupils, a nose tip and

wo mouth corners. The shape is denoted as S test = ( ̂  Y 1 , ˆ Y 2 , ..., ˆ Y N ) ,

here ˆ Y i denotes the i th face shape. 

It should be noticed that the 5 points of the training images can

e acquired directly by the ground truth. For the 68-point dataset,

he pupils are not offered, so the average of the points along eye

ontour is regarded as the pupils. The set is denoted as S train =
( ˆ X 1 , ˆ X 2 , ..., ˆ X M 

) . 

Training step: Most of regression-based algorithms utilize a

andom shape from other training images as the initial shape,

hich is very useful and effective in achieving better results for

he frontal face. However, large pose and occlusions are ubiquitous
egression-based face alignment, Computers & Graphics (2017), 
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Fig. 4. Framework of our face alignment algorithm. Instead of using the mean shape as an initial shape, we use neighborhood representation prior to produce a projected 

initial shape (PIS) and get fine results. 
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Fig. 5. Validation of the power of neighborhood representation prior on 300W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Similar faces are selected using the neighborhood representation prior. The 

top left image is the testing image and its five landmarks, and the images with 

numerical symbols are the selected faces. Here, we only illustrate the first seven 

faces, and the rank of similarity from high (no. 1) to low (no. 7). 
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in the real world, so this rough way is not robust enough to handle

the faces in complex scenes. 

For a training image, we first get its 5 points, and then use Co-

sine similarity distance to calculate its similarity with the remain-

ing training images, defined as D ( ̂  X i , ˆ X j ) , i � = j, j = 1 , 2 , ..., N, where

ˆ X i ∈ S train is a 10-dimensional vector for the 5 facial points, and

D ( ̂  X i , ˆ X j ) is the shape error between the current face and other

training samples. We can see that a smaller D ( ̂  X i , ˆ X j ) indicates a

higher similarity. This process of searching similar faces is efficient

and accurate. Then, based on the similarity, the m most similar

faces are selected. Following a previous work [12] , we set m = 20 in

the training step. This procedure contributes to dealing with large

variations of occlusions and avoiding trapping into local optimum.

As shown in Fig. 6 , the selected faces are very similar to the cur-

rent face in the terms of facial contour and head pose. 

Testing step: In the testing step, we use a better initial shape

generated from the proposed prior instead of the mean shape. Like

the training step, we use Cosine similarity distance to measure the

similarity between the testing face ˆ Y i and the training images ˆ X j .

The similar faces are denoted as C = { sim 1 , sim 2 , ..., sim m 

} . Finally,

based on Eq. (1) , the selected neighborhood faces and weight co-

efficients are used to generate the prior shape, defined as: 

S prior = CW 

T = 

m ∑ 

j=1 

w 

∗
j sim j (4)
Please cite this article as: H. Zhu et al., Better initialization for r
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here S prior is a prior shape, W = { w 

∗
1 , . . . , w 

∗
m 

} . Experiments show

he result of using the simple average of similar faces is slightly

etter than using the weighted average. For simplicity, we use the

verage of similar faces and get S prior = 

1 
m 

∑ m 

i =1 sim i . The details of

his situation are talked about in Section 5.4 . Based on Fig. 5 , the

0 most similar faces are selected from the training images in the

esting step. 

.2. Face-like landmark adjustment 

In order to get a high-quality initial shape closer to the target

ace, we propose a new algorithm to further optimize the prior

hape S prior to get a projected initial shape (PIS). This adjustment is

nly applied in the testing step. For a testing face, we have already

btained its prior shape, denoted as S = { S 1 , S 2 , ..., S N } . 
Then, we only choose from the prior shape the five key points,

efined as ˆ Z i , including two left–right pupils, a nose tip and two

outh corners. Now a similarity transformation between 

ˆ Z i and 

ˆ Y i ,

here ˆ Y i ∈ S test is created. This problem can be easily solved by

sing a reported algorithm [33] . Then, S prior is transformed into a

ew shape by using the transform relationship, denoted as S tran . As

hown in Fig. 7 , after shape fine-tuning, the location of key facial

andmarks (eyes, nose and mouth) is improved in detail. 

The final PIS for a testing face is defined as follows: 

 projected = λS prior + (1 − λ) S tran (5)

here the balance weight λ controls the level of shape fine-

urning and is empirically set within [0.8, 0.9]. In our experiments,

e set λ = 0 . 8 . The whole framework of prediction is illustrated in

ig. 4 . It should be noted that the computation of the initial shape

s normalized based on a provided face bounding box. 
egression-based face alignment, Computers & Graphics (2017), 
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Fig. 7. Some visual examples of improvement for face-like landmark adjustment. 

The red and green colors depict the landmarks before and adjustment, respectively. 

It is noteworthy that the locations of landmarks in eyes, nose and mouth are im- 

proved. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Table 3 

Normalized mean errors on COFW (29 points). The 

results are marked with ∗ from Ref. [29] , others are 

cited from the original articles. Lower values are 

better, bold is the best score. 

Method Normalized mean error 

Human [27] 5.6 

ESR [11] 11.2 ∗

RCPR [27] 8.5 

SDM [24] 11.14 ∗

HPM [40] 7.46 

RPP [41] 7.52 

TCDCN [42] 8.05 

RAR [15] 6.03 

Wu et al. [29] 5.93 

Baseline 9.29 

Baseline + PIS (ours) 5.54 
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.3. Implementation details 

We have re-implemented the regression-based algorithm

RT [12] as our baseline for both the 5-point set and the 68-point

et. The number of cascade stages is T = 15 , each cascade stage

onsists of K = 500 weak regression trees, feature pool size is 400,

nd the depth of each tree is D = 5 . In order to find the best split,

e set the number of node split test to be 500. In the training

tep, different from the algorithm in Ref. [12] that uses 20 different

hapes randomly sampled from training images, we choose the 20

ost similar faces for initialization based on similarity values. This

ay can be found to achieve robust performance. 

Following a previous work [12] , we use the mean shape as the

nitial shape, and report the mean errors of the 5-point set and

he 68-point set. All the experiments are conducted on 300W. As

hown in Table 2 , the result of our re-implementation is very close

o the original paper and is used as the baseline in the experi-

ents. It is worth noting that except lack of similarity transforma-

ion, the training step is similar to the testing step. Therefore, we

nly describe the details of the testing algorithm, as illustrated in

lgorithm 1 . 

lgorithm 1 Testing algorithm by using the neighborhood repre-

entation prior. 

Input: 

Testing images I i , training images ˆ S i ; 

a 5 point set S test , S train and other parameters; 

Output: 

Shape estimations S t ; 
1: Initialize 

2: Calculate shape similarity D (i, j) 

3: Based on D (i, j) , get the m most similar shapes sim i from train-

ing images 

4: Generate prior shape S prior 

5: Adjust face-like landmark S tran ← S prior 

6: Get the projected initial shape S = λS prior + (1 − λ) S tran 

7: for t = 1 to T do 

8: for k = 1 to K do 

9: Learn �S = R t (I, S) 

10: Update S t = S t−1 + �S 
11: end for 

12: end for 

. Experimental results 

Datasets: All the experiments are conducted on two public

atasets: the Caltech Occluded Faces in the Wild (COFW) and the

00 Faces in-the-Wild (300W). The images of these datasets are

ery challenging owing to the occlusions and large variations of

ose and expressions. For a fair comparison, following previous al-

orithms [12,27] , we only use the training images from these two

atasets and evaluate the testing images. 
Please cite this article as: H. Zhu et al., Better initialization for r
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COFW (29 landmarks) [27] contains about 1852 images with

arge occlusions, and has many images from MultiPIE [34] . COFW is

esigned to present faces in real-world conditions, and has an av-

rage occlusion of over 23%. The training set consists of 500 COFW

mages and 845 LFPW [35] images (1345 total), and the testing set

ncludes the remaining 507 COFW images. 

300W (68 landmarks) [36] is very challenging due to large

hanges in shape, pose, illumination and occlusions. It contains six

amous datasets with 68 landmarks, including LFPW, AFW, HELEN,

M2VTS and IBUG. Following the work [11] , we use AFW [37] , the

raining images of LFPW and HELEN [38] as training sets (3148 im-

ges in total), and LFPW, HELEN and IBUG as full set for testing

689 images). In addition, the testing images from LFPW and HE-

EN are used as the common subset (554 images), and those from

BUG as the challenging set (135 images). 

Evaluation metric: Following previous algorithms [11,39] , we

se standard normalized mean error to evaluate face alignment

erformance, and normalize all errors by using the inter-ocular

istance. In this paper, all the results are the simplified form with-

ut ‘%’ symbol. For comprehensive comparison, we also plot the

umulative errors distribution (CED) curves. 

.1. Comparison with other algorithms 

Results on COFW: To verify the effectiveness and robustness

f our algorithm, we compare it with other eight state-of-the-

rt methods on COFW, including ESR [11] , RCPR [27] , SDM [24] ,

PM [40] , RPP [41] , TCDCN [42] , RAR [15] , and Wu and Ji’s [29] . As

hown in Table 3 , the performance of our algorithm is greatly im-

roved on the challenging dataset COFW, which has large occlu-

ions by different objects, such as hands, hair and glasses. More-

ver, our result outperforms all reported results on COFW (3) . Our

ean error is even better than the human performance (5.54 vs.

.6) [27] , and is distinctly reduced by about 6.58% compared with

he best result from Wu and Ji [29] . 

For validation of our algorithm, we first use the mean shape as

he initial shape for testing (see the baseline result), and the mean

rror on COFW is 9.29. When using PIS for training and testing, the

esult is 5.54, with a reduction about 40.27%. 

Results on 300W: We compare our algorithm with eight state-

f-the-art algorithms, including DRMF [43] , ESR [11] , RCPR [27] ,

DM [24] , CFAN [44] , ERT [12] , LBF [13] , and CFSS [39] . As shown in

able 4 , our algorithm outperforms most of other state-of-the-art

ethods. The results on 300W (common set or full set) performs

ell against LBF and CFSS. Moreover, our algorithm reduces the

ean error dramatically. Compared with the baseline (i.e. ERT), our

lgorithm reduces the mean error by up to 8.1%, 24.7% and 14.8%

n the common set, the challenging set and the full set, respec-

ively ( Fig. 4 ). Such large reduction rates indicate our algorithm is

fficient and robust for the in-the-wild images. 
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Table 4 

Normalized mean errors on 300W dataset (68 points). The re- 

sults are marked with ∗ from Ref. [41] , and others are cited from 

the original papers. Lower values are better, bold is the best 

score. 

Method Common Challenging Full set 

DRMF [43] 6.65 19.79 9.22 

ESR [11] 5.28 17.00 7.58 ∗

RCPR [27] 5.67 15.50 7.54 ∗

SDM [24] 5.60 15.40 7.52 ∗

CFAN [44] 5.50 – –

ERT [12] – – 6.40 

LBF [13] 4.95 11.98 6.32 

CFSS [39] 4.73 9.98 5.76 

Baseline 4.81 13.7 6.55 

Baseline + PIS (ours) 4.42 10.32 5.58 

PIS Baseline+PriorShape Baseline+PIS
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Fig. 8. The normalized mean errors of each component in our algorithm on 300W. 

Table 5 

The running time of each part on 300W. Part 

1 is 5-point detection, part 2 is face similarity 

searching, and part 3 is 68-point regression. 

Time Part 1 Part 2 Part 3 Total 

ms 0.54 1.10 2.84 4.48 
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Fig. 9. Experimental results of CED curves on COFW. 

Table 6 

The speed compared with state-of-the-art algorithms on 

300W. 

Methods FPS Programming CPU (Intel) 

SDM [24] 70 ∗ C ++ i7-2600 

CFAN [44] 44 ∗ Matlab i7-3770 

ESR [11] 245 C ++ i5-3470 

ERT [12] 533 C ++ i5-3470 

LBF [13] 320 ∗ C ++ i7-2600 

CFSS [39] 25 Matlab i5-3470 

Ours 223 C ++ and Matlab i5-3470 
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In addition, the role of each component is also analyzed

through computing the corresponding mean errors on 300W.

These components include three parts: PIS, baseline + prior shape,

and baseline + PIS. 

Experiment results show the accuracy of face alignment is

greatly affected by the initial shape ( Fig. 8 ). By using our neigh-

borhood presentation prior, we get a high-quality PIS, and improve

the performance of the regression-based algorithms. 

5.2. Comparisons of CED curves 

Compared with four representative and prominent algorithms

(ESR [11] , ERT [12] , RCPR [27] , Wu and Ji [29] ), we plot the CED

curves on COFW ( Fig. 9 ). Also, we plot the CED curves for the three

typically algorithms ERT [12] , LBF [13] , CFSS [39] on 300W ( Fig. 10 ).

It is observed that our algorithm achieves the best performance on

both two benchmarks. 

As shown in Fig. 9 , we can see that with the error smaller

than 0.1, our algorithm and RCPR can localize the face landmarks

for about 95% and 80% images, respectively. Therefore, our algo-

rithm is strongly robust in getting better results under occlusion

environments. Also, our algorithm can detect the face landmarks
Please cite this article as: H. Zhu et al., Better initialization for r
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ccurately on the full set of 300W, with error smaller than 0.1 in

ver 90% images ( Fig. 10 (a)). 

We also illustrate some visible results of our algorithm on

OFW and 300W ( Figs. 11 and 12 ). Clearly, our algorithm locates

andmarks accurately in the condition of large pose, complex oc-

lusions and expression variations. 

.3. Running time 

The running time of our algorithm can be divided into three

arts, including five-point detection, face similarity searching, and

ulti-point regression. With 300W as an example, the time com-

lexity for five-point detection is O ( TKDP ), where P = 5 is the num-

er of landmarks. The time complexity of the second part is O ( N ),

here N = 3148 is the number of training images. This similarity is

btained by computing Cosine similarity distance between a sam-

le and the training dataset, and its computation takes little time.

he time complexity of multi-point regression is O ( TKDP ′ ), where

 

′ = 68 . The part two is implemented in Matlab, and others in C++.

he time of each part is demonstrated in Table 5 . Clearly, our algo-

ithm has a low computational complexity. 

Table 6 shows the running time (frame per second or FPS)

f different face alignment algorithms. The experiments are con-

ucted with 300W on an Intel Core i5-3470 3.2 GHz CPU. Our algo-

ithm is implemented on C++ and Matlab R2013a hybrid program-

ing, and it takes less than 5 ms (223 FPS) to predict an image.

e re-implement the representative ESR and ERT on C++. Both al-

orithms are very fast for face landmark detection, but their ac-

uracies are lower than ours. For CFSS, we used the Matlab codes

rovided by the authors for comparison. Since neither CFAN nor

BF shares their codes, we choose the best published performance

arked with ‘ ∗’. CFAN takes about 22.84 ms per image, which runs
egression-based face alignment, Computers & Graphics (2017), 

http://dx.doi.org/10.1016/j.cag.2017.07.036


H. Zhu et al. / Computers & Graphics 0 0 0 (2017) 1–9 7 

ARTICLE IN PRESS 

JID: CAG [m5G; August 21, 2017;13:3 ] 

Fig. 10. Experiment results of CED curves on 300W. (a) Full set. (b) Common set. (c) Challenging set. 

Fig. 11. Some images from COFW where our algorithm outperforms Wu et al.’s algorithm and RCPR. These images suffer from extreme occlusions. 

Fig. 12. Some results from 300W where our algorithm predicts more accurately than LBF and CFSS. These samples are challenging due to large variations of pose and 

expression. 
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by Matlab 2012 on Intel i7-3770 3.4 GHz CPU. LBF spends 3.1 ms

per image on a single core i7-2600 CPU. Although SDM is provided

with executable code, it is only used to detect 49 landmarks. For

a fair comparison, the speed of SDM in detecting 68 landmarks is

cited from LBF [13] . 

5.4. Further analysis 

In Section 4.1 , we use the simple average of similar faces instead

of the weighted average. We have two reasons. First, the optimized

weight parameter in Eq. (1) is mainly used to verify our neigh-

borhood representation prior: a face can be composed of a linear

combination of other similar faces. The current solution of weights

may be not optimal owing to the lack of effective constraints. In

addition, the weight of a more similar face should be bigger. We

could add constraints to the weight coefficients in Eq. (1) , such as

w 

∗
1 

> = w 

∗
2 

> = . . . > = w 

∗
m 

, which will be exploited in the future. 

Second, when we apply the weighted average on 300W, the

mean error is slightly less than that of simple average (5.65 vs.

5.58) due to the under-fitting problem. Specifically, the algorithmic

parameters are too simple to capture the underlying trend of the

training data. For example, the testing samples contain many im-

ages with large pose variations, such as the head pose over 40 °, but

the training samples have few such images. Also, a higher diversity

of training samples helps us to generate a better weighted average.

Taking high accuracy into consideration, we use the simple average

instead of the weighted average. 

6. Conclusion 

Previous works that usually start with the mean shape or use

complex algorithms for initialization often fail to deal with face

alignment under occlusions, large pose and expressions. In this

paper, we use a neighborhood representation prior to generate a

projected initial shape, which greatly improves the performance of

cascade regression-based algorithms. In the condition of heavy oc-

clusions, our initial scheme is efficient and the final result is better.

Because of the faster speed, our algorithm can be used to track the

facial landmarks in realtime. Our algorithm has some limitations,

such as the low location precision of the five landmarks detector,

which may greatly reduce the accuracy of similar face searching.

Since a better key point localization helps to generate a better ini-

tial shape, we will further improve the performance of key point

detection in future. 
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