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ABSTRACT

In this paper, we propose a novel multi-center convolution-
al neural network for unconstrained face alignment. To uti-
lize structural correlations among different facial landmarks,
we determine several clusters based on their spatial position.
We pre-train our network to learn generic feature represen-
tations. We further fine-tune the pre-trained model to em-
phasize on locating a certain cluster of landmarks respective-
ly. Fine-tuning contributes to searching an optimal solution
smoothly without deviating from the pre-trained model ex-
cessively. We obtain an excellent solution by combining mul-
tiple fine-tuned models. Extensive experiments demonstrate
that our method possesses superior capability of handling ex-
treme occlusions and complex variations of pose, expression,
illumination. The code for our method is available at http-
s://github.com/ZhiwenShao/MCNet.

Index Terms— multi-center convolutional neural net-
work, unconstrained face alignment, structural correlations

1. INTRODUCTION

Face alignment refers to detecting facial landmarks such as
pupil centers, nose tip and mouth corners. It is the preproces-
sor stage of many face analysis tasks like face recognition [1]
and face animation [2]. There is a pressing need for a robust
and accurate face alignment method with the development of
social networks and mobile terminals. Such requirement is
still challenging in unconstrained scenarios, owing to severe
occlusions and large face variations. Our goal is to develop
an efficient face alignment method to handle unconstrained
faces.

Due to the outstanding representation power, deep con-
volutional networks have achieved great success in various
computer vision tasks. Face alignment can be regarded as a
nonlinear regression problem, which transforms appearance
to shape. We design an effective deep convolutional network
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to model the highly nonlinear function. Motivated by the ex-
cellent performance of VGGNet [3] in representing features,
the structure of our network is based on stacked convolutional
layers.

(a) Chin is occluded. (b) Right contour is invisible.

Fig. 1. Examples of unconstrained face images with partial
occlusion and large pose.

We believe that each facial landmark is not isolated but
highly correlated with adjacent landmarks. As shown in Fig-
ure 1(a), facial landmarks along the chin are all occluded, and
landmarks around the mouth are partially occluded. Figure
1(b) shows that landmarks on the right side of face are almost
invisible. Therefore, landmarks in the same local face region
have similar properties including occlusion and visibility. We
divide facial landmarks into several clusters based on their s-
patial location.

We propose a novel convolutional neural network, re-
ferred to as Multi-Center Network (MCNet), to reinforce the
learning for each cluster which is treated as a separate center.
Each center in our MCNet is fine-tuned to emphasize on the
shape prediction of a specific face region respectively. By em-
ploying shared feature representations from a pre-trained ba-
sic model and multiple center-specific feature representation-
s, we attain an excellent model. Another interesting aspect
of the MCNet architecture is that the complexity of combined
model is not increased compared to the basic model.

2. RELATED WORK

Our method achieves unconstrained face alignment based on
a multi-center convolutional network. We review researches
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from three aspects related to our method: generic face align-
ment, unconstrained face alignment, and face alignment via
deep learning.
Generic Face Alignment: Active Appearance Model [4] em-
ploys an appearance model and minimizes the texture residu-
al to estimate the shape. Xiong et al. [5] predicted the loca-
tion of facial landmarks by solving the nonlinear least squares
problem, with SIFT [6] features and linear regressors applied.
ESR [7] uses cascaded fern regression to predict the shape in-
crement with pixel-difference features. Ren et al. [8] uses a
locality principle to obtain a set of local binary features jointly
learning a linear regression for locating landmarks. Most of
these methods give an initial shape and refine the shape in an
iterative manner. The final solutions are apt to get trapped in a
local optima with a poor initialisation. Unlike these methods,
our network takes raw face patches as input.
Unconstrained Face Alignment: Large pose variations and
severe occlusions are main challenges in unconstrained envi-
ronments. Many methods utilize 3D shape models to solve
large-pose face alignment. Yu et al. [9] uses a cascaded
deformable shape model to locate landmarks of large-pose
faces. Cao et al. [2] employs a Displaced Dynamic Ex-
pression regression to estimate the 3D face shape and 2D
facial landmarks. Jourabloo et al. [10] proposed a cascad-
ed coupled-regressor to infer parameters of 3D shapes. It can
predict both location and visibility of facial landmarks. RCPR
[11] detects occlusions explicitly and uses shape-indexed fea-
tures to regress the shape increment. Wu et al. [12] designed
a robust cascaded regressor to handle complex occlusions and
large head poses. Different from these methods, our method
is not based on 3D models and does not process occlusions
specifically.
Face Alignment via Deep Learning: Cascaded CNN [13]
estimates the position of five facial landmarks with cascad-
ed convolutional networks. It uses average estimation in each
level and refines the shape level by level. Zhou et al. [14] also
uses multistage deep networks to detect facial landmarks from
coarse to fine. CFT [15] learns the mapping from input face
patch to estimated shape using a coarse-to-fine training strate-
gy. It searches the solution smoothly by adjusting the relative
weight between principal landmarks and elaborate landmarks.
TCDCN [16] employs auxiliary facial attribute recognition to
obtain correlative facial properties like expression and pose,
which improves the performance of landmark detection. In
contrast, our method uses only one network and is indepen-
dent of additional facial attributes. Both CFT and TCDC-
N utilize fine-tuning methods to improve the effectiveness of
learning process. Our method also use the fine-tuning strategy
to obtain a better solution from the pre-trained model.

3. MULTI-CENTER NETWORK

In this section, we describe the structure of our MCNet and
the learning algorithm. Our network reinforces the learning

for landmarks of each local facial part.

3.1. Network Architecture

We propose an effective multi-center convolutional neural
network to learn a mapping from appearance to shape. We
analyse the facial structure and partition facial landmarks into
seven clusters, as shown in Figure 2. The seven clusters are
left eye, right eye, nose, mouth, left contour, right contour and
chin.

(a) Partition of 29 landmarks. (b) Partition of 68 landmarks.

Fig. 2. Partition of facial landmarks.

Our network consists of shared layers and multiple center-
specific shape prediction layers, as illustrated in Figure 3. We
initialize shared layers and each center-specific layer with a
pre-trained basic model which has only one shape prediction
layer. There are m branches of center-specific layers at the
end of our network. The value of m is 5 and 7 for 29 and
68 facial landmarks respectively. Each center-specific layer
estimates x and y coordinates of all n facial landmarks, while
focusing on the shape estimation of a specific face region. We
obtain a new shape prediction layer by combining estimation
units from corresponding center-specific layers. Shared layers
and combined shape prediction layer compose the combined
model whose complexity is as same as the basic model.

In our network, eight convolutional layers and one fully-
connected layer are used for learning generic feature repre-
sentations. We perform the batch normalization [17] and Rec-
tified Linear Unit [18] activation after each convolution, to ac-
celerate the convergence of our network. Each max-pooling
layer follows a stack of two convolutional layers proposed by
VGGNet [3]. We use inter-ocular distance normalized Eu-
clidean loss [15] to measure the performance of estimation. It
should be noted that the inter-ocular distance is the Euclidean
distance between the two pupil centers.

In order to increase the diversity of training data, we em-
ploy a similar data augmentation method to [19] with four
steps: rotation, translation, horizontal flip, and JPEG com-
pression. This is beneficial for avoiding overfitting and im-
proving the robustness of learned models. During the pre-
training process, due to the large initial loss, we employ a s-
mall base learning rate to avoid divergence. According to the
principle of Adaptive Learning Rate (ALR) [19] algorithm,



Fig. 3. The structure of our MCNet. It finally obtains a combined model fine-tuned from a pre-trained basic model. The equation
attached to each layer signifies the height, width and channel respectively. Every stack of two convolutional layers possesses
the same equation. The equation k1 × k2/k3/k4 symbolizes the height, width, stride and padding of filters respectively. The
same type of layers use identical filters.

we increase the learning rate when the loss is reduced signifi-
cantly.

Compared to other typical convolutional networks like
VGGNet [3], our network is substantially smaller and shal-
lower. We believe that such a concise structure is efficient
for estimating the location of facial landmarks. Firstly, face
alignment aims to regress coordinates of fewer than 100 fa-
cial landmarks generally, which demands much smaller mod-
el complexity than visual recognition problems. Secondly, a
very deep network may fail to work well for landmark detec-
tion owing to reduction of spatial information layer by layer.
Finally, a simple network is not easy to overfit given a small
amount of training data.

3.2. Learning Algorithm

Algorithm 1 is the overview of our learning algorithm. The
basic model and combined model both have only one branch
C. Θ is the set of weights and biases in our network, which
is updated using Stochastic Gradient Descent algorithm at
each iteration. Ω and Φ are used for training and model s-
election respectively. We represent shared layers and the i-th
center-specific layer of our network with S and Ci respec-
tively. f̂2j−1 and f̂2j denote predicted x coordinate and y
coordinate of the j-th facial landmark respectively, and f sig-
nifies ground truth coordinates. wj is the weight of the j-th
landmark, whose value is 1 during pre-training. d denotes
the ground truth inter-ocular distance. ΘS signifies the corre-
sponding part of shared layers in Θ.

We first pre-trains a basic model, and further fine-tunes
each center-specific layer to search a better solution from a
good initial point respectively. After fine-tuning all the center-
specific layers, we replace these layers with a single branch
and combine their corresponding parameters. The final com-
bined model improves the location performance of each fa-

Algorithm 1 Multi-Center Learning Algorithm
Input: A multi-center network N with initialized parameter

set Θ, a training set Ω, a validation set Φ.
Output: Θ.
1: Pre-train S and C of N using ALR [19] on Ω until con-

vergence;
2: for i = 1 to m do
3: Use the loss E =

∑n
j=1 wj [(f2j−1− f̂2j−1)2 +(f2j−

f̂2j)
2]/(2d2);

4: Fine-tune Ci from C with the parameters of S fixed
until convergence;

5: Save the corresponding part of center-specific land-
marks in Θ as Θi(c);

6: end for
7: Θ = ΘS ∪Θ1(c) ∪ · · · ∪Θm(c);
8: Return Θ.

cial landmark by exploiting the advantages of every center-
specific solutions.

When fine-tuning a center-specific layer, we give a much
larger weight to the corresponding cluster of facial landmarks
than other landmarks. Since landmarks from the same cluster
have similar properties, they share an identical weight. For
the i-th fine-tuning step, wi(c) and wi(m) denote the weight
of center-specific landmarks and remaining minor landmarks
respectively. Different fine-tune steps have different center-
specific and minor facial landmarks. If the j-th landmark is
center-specific, then wj = wi(c); If the j-th landmark is mi-
nor, then wj = wi(m). We assume there is a multiple rela-
tionship between two weights as

wi(c) = ηwi(m), (1)

where η � 1 is an amplification factor. si(c) refers to the
number of center-specific facial landmarks. To be consisten-



Fig. 4. Several images from COFW where our method indicates higher accuracy than RCPR and CFT in details. These
examples are suffered from extreme occlusions.

t with the basic model, we keep weights conforming to the
following formula

wi(c)si(c) + wi(m)(n− si(c)) = n. (2)

By solving above two equations, we obtain the respective
weights

wi(c) = ηn/[(η − 1)si(c) + n],

wi(m) = n/[(η − 1)si(c) + n].
(3)

We train our MCNet using an open source deep learning
framework Caffe [20]. In our experiments, η = 125, and the
base learning rate of pre-training and each fine-tuning step
are 0.02 and 0.001 respectively. It is worth mentioning that
the base learning rate of fine-tuning should be small to avoid
deviating from the pre-trained model overly.

4. EXPERIMENTS

In this section, we demonstrate the effectiveness of multi-
center learning algorithm and compare against state-of-the-art
methods on two face alignment benchmarks.

4.1. Datasets and Settings

Datasets: There are two challenging benchmarks, COFW
[11] and IBUG [21], for evaluating face alignment with severe
occlusion and large variations of pose, expression and illumi-
nation. COFW is an occluded dataset with 1, 345 training
images and 507 testing images. IBUG includes 135 testing
images with large appearance variations. When performing
evaluation on IBUG, we use 3148 images from 300-W [21]
for training. We employ the provided face bounding boxes to
crop face patches.

Evaluation Metric: Similar to previous methods [7, 13, 16],
we report the mean of inter-ocular distance normalized er-
ror, and treat the mean error larger than 10% as a failure. To
obtain a more comprehensive comparison, we also plot the
cumulative errors distribution (CED) curves.

4.2. Validation of Multi-Center Learning Algorithm

We validate the multi-center learning algorithm by compar-
ing the basic model with the combined model. The results of
mean error and failure rate for two models are shown in Table
1.

Table 1. Comparison of mean error (%) and failure rate (%)
for the basic model and combined model.

Method COFW IBUG
Mean Failure Mean Failure

Basic 6.26 3.16 9.23 33.33
Combined 6.08 2.96 8.87 25.93

It is demonstrated that the combined model has small-
er mean error and failure rate than the basic model in both
datasets. It is noteworthy that the basic method has already
achieved a good performance, which verifies the effectiveness
of our network. Our multi-center learning algorithm exploit-
s the representation power of the network by reinforce the
learning for each local face region. We can conclude that the
algorithm improves the accuracy and robustness of face align-
ment remarkably.

4.3. Comparison with Other Methods

We develop an effective unconstrained face alignment method
to compare against state-of-the-art methods including ESR



Fig. 5. Example images from IBUG where our method MCNet outperforms LBF and CFSS. These cases are challenging due
to large variations of pose, expression and illumination.

[7], SDM [5], RCPR [11], LBF [8], CFSS [22], TCDCN [16],
CFT [15] and Wu et al. [12]. Our method and other methods
except TCDCN all learn models using given training images
from the benchmark. In addition to provided images, TCDCN
uses outside training data labeled with facial attributes.

Table 2. Comparison of mean error (%) with state-of-the-art
methods. Several methods did not share their results on the
benchmarks, so we use results from [16] marked with “*”.

Method COFW IBUG
ESR [7] 11.2* 17.00*
SDM [5] 11.14* 15.40*

RCPR [11] 8.5 17.26*
LBF [8] - 11.98

CFSS [22] - 9.98
TCDCN [16] 8.05 8.60

CFT [15] 6.33 10.06
Wu et al. [12] 5.93 -

MCNet 6.08 8.87

We report the results of our method MCNet and previ-
ous works in Table 2. We can see that our method outper-
forms most of the state-of-the-art methods. It is worth noting
that TCDCN obtains better performance than our method on
IBUG partly owing to their larger training data. Although oc-
clusions are not detected explicitly, we achieve an outstanding
performance on par with Wu et al. on COFW. Benefiting from
utilizing structural correlations among different facial parts,
our method is robust to severe occlusions.

We plot the CED curves for our method and several state-
of-the-art methods in Figure 6. It is observed that our method
achieves competitive performance on both two benchmarks,
especially for high-level normalized mean error. Therefore,
our method is strongly robust to unconstrained environments.

We compare with other methods on several challenging im-
ages from COFW and IBUG, as shown in Figure 4 and 5
respectively. It is obvious that our method demonstrates su-
perior capability of handling severe occlusions and complex
variations of pose, expression, illumination.

(a) CED for COFW. (b) CED for IBUG.

Fig. 6. Comparisons of CED curves with previous methods.

Our method only takes 18 ms on average to process one
face on a single Intel Core i5-6200U CPU, profiting from low
model complexity and computational cost of our network. We
believe that our method can be extended to real-time facial
landmark tracking in unconstrained scenarios.

5. CONCLUSION

We propose an effective multi-center convolutional neural
network for unconstrained face alignment. Our method ex-
hibits superior ability of handling large variations of pose, ex-
pression, illumination, and occlusion. The multi-center net-
work is also promising for being applied in relevant research
areas such as facial attribute recognition. Furthermore, it is
worth exploring the multi-center learning strategy in other
fields of machine learning.
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