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ABSTRACT
We propose a novel method for feature description used for
image matching in this paper. Our method is inspired by the
autoencoder, an artificial neural network designed for learn-
ing efficient codings. Sparse and orthogonal constraints are
imposed on the autoencoder and make it a highly discrimi-
native descriptor. It is shown that the proposed descriptor
is not only invariant to geometric and photometric transfor-
mations (such as viewpoint change, intensity change, noise,
image blur and JPEG compression), but also highly efficient.
We compare it with existing state-of-the-art descriptors on
standard benchmark datasets, the experimental results show
that our LSOD method yields better performance both in
accuracy and efficiency.
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1. INTRODUCTION
Local feature descriptor is basal research of many com-

puter vision problems, such as image stitching [11], camera
calibration [19], object detection [14], and so on. SIFT key-
point detector and descriptor [12], which was proposed a
decade ago, has been proved effective in many image match-
ing scenarios [18, 20], but it imposes a large computational
cost, especially when used for real-time applications such
as simultaneous localization and mapping (SLAM) systems.
Many algorithms were proposed to improve SIFT in the fol-
lowing years, SURF [3] is one of them, which is faster but
less accurate than SIFT. DSP-SIFT [5] raises a modification
based on pooling gradient orientations. KAZE [1] introduces
a feature detection and description algorithm in nonlinear
scale spaces. It is accelerated in [2], by a descriptor called
AKAZE.

On the other hand, machine learning and neural network
are two of the rapidly growing fields in recent years and
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Figure 1: Illustration of calculating the LSOD de-
scriptor for an image patch.

have achieved great success in many classical computer vi-
sion problems, such as image classification [9] and action
recognition [8]. Inspired by sparse autoencoder, one of the
well-known neural network models, we propose a new im-
age local feature descriptor. With the orthogonal features
learned from image dataset, autoencoder encodes an image
patch as the descriptor. Our method is called Local Sparse
Orthogonal Descriptor(LSOD), an example is shown in Fig-
ure 1. The main contributions of this paper include:

• Enhancing FAST detector with median filter scale pyra-
mid and intensity centroid.

• Proposing a method of training a sparse orthogonal
autoencoder used to describe the local image feature
patch.

2. RELATED WORK
Detector: The first step in image matching is detect-

ing interest points in the image and there have been many
productive interest point detectors. Harris corner detector
[7] gives a mathematical approach for determining whether
an image patch is flat, edge or corner. SIFT calculates his-
tograms of gray level gradient and chooses the peak orien-
tation as the main direction. SURF uses approximation of
block patterns, which is faster than computation of gradi-
ents. FAST and its extensions [16, 17] are good choices for
keypoints detecting in real-time systems. They are stable
and efficient to find corner keypoints, but sensitive to scale
variance. Therefore the FAST detector is often applied with
pyramid schemes for scale change.
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Descriptor: With one interest point and nearby patch
pixels, we need a discriminative descriptor to calculate the
local feature vector. SIFT generates feature descriptors by
calculating histograms of oriented gradients (HOG), while
SURF’s descriptor is based on wavelet responses in horizon-
tal and vertical direction. Some binary descriptors, such as
BRIEF[4], use simple binary tests between pixels to repre-
sent features, which could use the Hamming distance instead
of the Euclidean distance to search the matched pairs and
reduce the time complexity.

3. THE PROPOSED METHOD
In our method, we use FAST detector in image pyramid to

find interest points at different scale levels and train a sparse
orthogonal autoencoder on a large image patch dataset to
encode the local feature vector.

3.1 Enhanced FAST detector
FAST detector is famous for its light computational com-

plexity. Its segment test criterion operates by comparing
the intensity between the corner candidate p and a circle of
sixteen pixels around it. If there exists a set of n contigu-
ous pixels in the circle which are all brighter than Ip + t or
darker than Ip − t, p will be classified as a corner, where Ip
is the intensity of the candidate pixel p and t is a manual
threshold. However, FAST detector can not resist rotation
and scale changes.

An usual approach for multiscale algorithm is generating
an image pyramid by filtering the original image with an
appropriate function over increasing scales. Gaussian kernel
is frequently-used while with the drawback of loss of local-
ization accuracy, because the natural boundaries of objects
are smoothed to the same degree with details and noise. Al-
cantarilla et al. [1] performs feature detection in nonlinear
scale pyramid, in which the noise in images is blurred but
the object edges remain unaffected, the resulting algorithm
is called KAZE. However the improvement brings out high
computation complexity. To alleviate this drawback, we use
median filter instead of Gaussian filter to build the image
pyramid, which could obtain the similar result as KAZE
without paying the high cost in computation. See the ex-
ample in Figure 2. At high levels in pyramid, the details and
noise in the original image (such as the texture on the brick
wall) should be ignored and the prominent structure (like the
edges of building or windows) should be maintained. This
is well done in median filter pyramid and KAZE’s nonlinear
pyramid. However, the boundaries are blurred in Gaussian
filter pyramid, resulting in a loss of localization and feature
describing.

At each level of the image pyramid, we need to calculate
main orientation of each detected point. The concept of
intensity centroid was first proposed in [15]. It defines the
moments as:

mpq =
∑
x,y

xpyqI(x, y) (1)

where I(x, y) denotes the intensity of pixel at the position
(x, y), and the intensity centroid is located in:

C
4
= (Cx, Cy) =

(
m10

m00
,
m01

m00

)
(2)

Denoting the geometric center of a feature patch as O
4
=

Figure 2: Comparison between the Gaussian filter,
median filter and nonlinear diffusion scale pyramid.
(a): original image. (b, c, d):Gaussian filter pyra-
mid, KAZE’s scale pyramid and median filter pyra-
mid at the same scale level.

(Ox, Oy), direction of the vector
−−→
OC is determined as the

main orientation of the local interest point patch. We can
calculate an angle θ by:

θ =


tan−1 Oy − Cy

Ox − Cx
, if Cx ≤ Ox

tan−1 Oy − Cy
Ox − Cx

+ π, if Cx > Ox
(3)

Then the patch is rotated by θ degrees before calculating
description, this can help resisting the influence of image
rotation.

3.2 Sparse orthogonal autoencoder descriptor
The local information used to generate feature descrip-

tion varies from method to method. SIFT [12] counts the
histogram of gradient orientation. While it is time consum-
ing to calculate the gray level gradient. BRIEF and some
other binary descriptors [4, 10] use simple binary tests be-
tween pixels to represent features, which is fast to generate
but weak in expression ability.

In order to overcome these problems, here we propose a
Local Sparse Orthogonal Descriptor (LSOD) for feature de-
scription. With a trained autoencoder we can encode the
descriptor of a local image patch efficiently. Learning local
features needs large amounts of image patches as the train-
ing data. Sampling patches in image database randomly is a
common approach. But in our case, we only care about how
the autoencoder will represent the interest point patches,
such as the corners. So we construct a training set with 500k
colored patches sampled from the PASCAL 2006 database
[6], using the enhanced FAST detector introduced in sec-
tion 3.1. We train an autoencoder on the image patch data,
using the neural network shown in the Figure 3 (a).

Having one image patch x =
[
x(1), x(2), . . . , x(n)

]T
as the

input layer 1, with the weight matrix W (1) ∈ Rh×n and
the activation function f(x), often sigmoid function f(x) =

1

1 + e−x
is used, we can get the output of the hidden layer
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Figure 3: The neural network model and the visual-
ization of features learned by the network. First
Row: fully-connected autoencoder. Second Row:
partially-connected autoencoder. Best viewed in
color.

2 as: a(2) = f(W (1)x), h is the number of hidden units.

Similarly, we can calculate the output of layer 3 as: a(3) =
f(W (2)a(2)), a(3) is also denoted as hW (x).

A sparse autoencoder tries to learn a function hW (x) ≈ x
with some sparsity constraint. Given the training data set
X = [x1, x2, . . . , xN ] of the interest point patches, we can
calculate the average activation of the jth hidden unit as:

ρ̂j =
1

N

N∑
i=1

[
a
(2)
j (xi)

]
(4)

then enforce the constraint ρ̂j = ρ to guarantee the sparsity
of autoencoder, where ρ is a sparsity parameter, which is
usually a small number close to zero. A relaxed penalty
term is used here to replace the constraint ρ̂j = ρ:∑

j

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(5)

This term can also be written as the KL divergence:∑
j

KL(ρ‖ρ̂j) (6)

By means of gradient descent method, we can minimize
the cost function and get the optimized encoding parameter
W (1), which is visualized in the Figure 3 (b). It shows that
the different hidden units have learned to detect edges in the
image patch. However, in this fully-connected autoencoder,
each hidden unit is only sensitive to a partial region of lo-
cal image patch, and more than one units may detect the
edges with same texture, color or orientation, just differing
in position. This means that there exits high parameter re-
dundancy in the fully-connected autoencoder. To cope with
this problem, we propose a partially-connected autoencoder,
as shown in Figure 3 (c). We split the whole network into
m weight-sharing sub-networks, with the advantage that we

only need to train the sub-autoencoder one time instead of
training m different sub-autoencoders. Although the train-
ing data is m times bigger than the original data, we reduce
the number of parameters by m2 times. And the training
time is reduced by about m times than the original autoen-
coder in our experiments. As shown in Figure 3 (d), the
hidden units of partially-connected autoencoder detect more
distinctive edge features, which can generate more discrim-
inatory descriptions.

However, the partially-connected autoencoder still could
not eliminate the similarity between the learned features to-
tally. So we enforce another constraint that the weight ma-
trix W must be an orthogonal matrix. In order to make the
optimization tractable, we use a Frobenius norm as a relaxed
penalty term added to the cost function. Finally the overall
cost function of our problem is:

J(W ) =
1

N

N∑
i=1

‖hW (xi)− xi‖2 + β
∑
j

KL(ρ‖ρ̂j)

+ γ‖WWT − I‖F

(7)

After training the sparse orthogonal autoencoder, a weight
matrix W (1) is obtained and we can encode a local patch

x with the descriptor W
(1)
s Rθx, where the rotation matrix

Rθ makes the patch rotate to the main direction, and W
(1)
s

denotes the parameters W (1) resized to the corresponding
scale level.

Thus, our LSOD descriptor becomes:

descriptor =
W

(1)
s Rθx

‖W (1)
s Rθx‖

(8)

The normalization ensures that patches in different scales
return same descriptors, it also helps resisting the illumina-
tion variance.

4. EXPERIMENTS
In this section we present the evaluation results of our de-

scriptor on standard datasets and its comparisons to state-
of-the-art descriptors. For SIFT, SURF we use the imple-
mentations included in OpenCV. For KAZE, AKAZE and
DSP-SIFT, the original codes provided by the authors were
used. We set ρ = 0.01, β = 5, γ = 1 to train the autoen-
coder. All experiments results were obtained on a Core i5
Quad 3.0GHz laptop computer.

4.1 Interest point matching
In this section, we evaluate our descriptor on the stan-

dard Oxford dataset, which contains images with different
geometric and photometric transformations, such as : view-
point change, scale change, image rotation, image blur, illu-
mination change and JPEG compression.

We use the evaluation criterion proposed by Mikolajczyk
and Schmid [13] which is based on the number of correct
and false matches between image pair. We use the nearest
neighbor distance ratio (NNDR) as the matching strategy,
which accepts a match if the distance ratio between the first
and second nearest neighbors is below a threshold. The
results are presented with recall versus 1-precision curves,

234



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8
re

c
a
ll

(a)bikes, 1 vs 4

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

re
c
a
ll

(b)wall, 1 vs 4

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1-precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
c
a
ll

(c)leuven, 1 vs 4

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

re
c
a
ll

(d)trees, 1 vs 5

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.4

0.5

0.6

0.7

0.8

re
c
a
ll

(e)ubc, 1 vs 5

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

re
c
a
ll

(f)camrel

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

re
c
a
ll

(g)diamondhead

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1-precision

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

re
c
a
ll

(h)fishbowl

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1-precision

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

re
c
a
ll

(i)goldengate

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.20

0.25

0.30

0.35

0.40

0.45

0.50

re
c
a
ll

(j)halfdome

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
c
a
ll

(k)hotel

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1-precision

0.00

0.05

0.10

0.15

0.20

0.25

re
c
a
ll

(l)yard

LSOD

SIFT

SURF

KAZE

AKAZE

DSP-SIFT

Figure 4: Interest points matching experiment results.(a)-(e): On Oxford dataset. (f)-(l): On Adobe
Panorama dataset. Best viewed in color.

which is computed based on different matching thresholds:

recall =
#correctmatches

#correspondences
(9)

1− precision =
#falsematches

#allmatches
(10)

The experiment results are plotted in Figure 4(a)-(e). Ob-
viously, our LSOD gives the best results overall. Other
methods, each with its strengths, rank 2nd to 6th on dif-
ferent image transformations. As can be observed, the pro-
posed LSOD obtains a high discriminative power while stay-
ing robust to many image transformation.

4.2 Test on panorama dataset
One mainly application of image matching is panorama

image stitching. Adobe Panoramas Dataset consists of sev-
eral panorama image sets in different scenes, together with
ground truth homographies for each overlapping image pair.
We still use the same evaluation criterion as section 4.1. The
results plotted in Figure 4(f)-(l) shows that our LSOD out-
performs other descriptors on this panorama image dataset.
It is appropriate for image stitching application and capable
in variant scenes.

4.3 Timing Evaluation
In this section we perform a timing evaluation for a com-

parison between these feature descriptors. Considering that
different methods detect different numbers of interest points,
we record the total time of detecting and computing features
divided by the number of detected points. The test uses the
the first image of each scene in standard Oxford dataset.

Table 1 shows the average timing results in milliseconds

Table 1: Timing evaluation result.
Method LSOD SIFT SURF KAZE AKAZE DSP-

SIFT
time(ms) 0.038 0.132 0.054 0.411 0.131 1.324

for detecting and computing each local feature patch. As
can be observed, our LSOD feature is more computational
efficient than other descriptors. It is about 4 times faster
than SIFT and 1.5 times faster than SURF. KAZE is com-
putational expensive due to the calculation of nonlinear scale
pyramid. AKAZE is about 3 times faster than KAZE, but
it is only comparable to SIFT. DSP-SIFT is the slowest may
because its implementation is based on unoptimized MAT-
LAB code.

5. CONCLUSIONS
In this paper we proposed a Local Sparse Orthogonal

Descriptor (LSOD) for image matching. Compared with
the previously proposed methods, experimental results show
that LSOD is superior both in discriminative expression and
efficient computational process.
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